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ABSTRACT
This work contributes to the theoretical foundation for pricing in
data markets and offers practical insights for managing digital data
exchanges in the era of big data. We propose a structured pricing
model for data exchanges transitioning from quasi-public to market-
oriented operations. To address the complex dynamics among data
exchanges, suppliers, and consumers, the authors develop a three-
stage Stackelberg game framework. In this model, the data exchange
acts as a leader setting transaction commission rates, suppliers are
intermediate leaders determining unit prices, and consumers are fol-
lowers making purchasing decisions. Two pricing strategies are exam-
ined: the Independent Pricing Approach (IPA) and the novel Perfectly
Competitive Pricing Approach (PCPA), which accounts for competition
among data providers. Using backward induction, the study derives
subgame-perfect equilibria and proves the existence and uniqueness
of Stackelberg equilibria under both approaches. Extensive numeri-
cal simulations are carried out in the model, demonstrating that PCPA
enhances data demander utility, encourages supplier competition,
increases transaction volume, and improves theoverall profitability and
sustainability of data exchanges. Social welfare analysis further con-
firms PCPA’s superiority in promoting efficient and fair data markets.
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1. Introduction

In recent years, the digital economy has expanded rapidly (Ma & Zhu, 2022), and the
data produced from diverse production and management activities has multiplied. Mas-
sive datasets have become a desirable commodity as the demand for training data for
machine learning and external data for management decision-making increases (Munappy
et al., 2022). The effective use of acquired datasets is a critical issue, which has given rise to an
emerging market, the data market (Farboodi & Veldkamp, 2023). The primary idea behind
the data market is to establish an online platform for data producers and users to list, pur-
chase, and trade data (Nguyen et al., 2021). Data exchanges have emerged to promote global
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data trade andprogress the data capitalization process by providing services such as data trad-
ing infrastructure services, data product registration, and data product trading (Große-Bley
& Kostka, 2021; Todaro, 2023).

Data is seen as a virtual commodity with replicability, large amounts, and low marginal
cost, so the traditional market price mechanism must be modified for an effective data mar-
ket (Aaltonen et al., 2021). Many data exchanges have been established to lead and support
the development of digital businesses, like the Shanghai Data Exchange and BDEX (Y. N. Li
et al., 2020; Tang et al., 2020). However, the quasi-public service organization-type operation
model of early data exchanges is not conducive to the sustainable development of the data
market, as there is a lack of a clear profit model, and it is difficult to rely solely on policy
support to maintain the long-term operation of data exchanges, which is why data exchange
profitability must be improved.

The purpose of this work is to develop a structured pricing approach for data markets
that is centered on data exchanges. For an effective centralized data market, the following
difficulties must be overcome.

(1) Developing a profitability model for data exchanges with market-based operations
to accomplish high-level objectives such as increasing operational independence and
achieving sustainable development. This is because market-oriented transformation is
an unavoidable solution for data exchanges to overcome the survival challenge.

(2) Develop effective negotiating and pricing approaches for data exchange-centralized data
markets. Approaches to pricing for data products must be carefully designed to provide
participant advantages, fairness, and incentives.

To overcome the first difficulty, we apply the Stackelberg structure for data markets with
data exchanges (Li & Sethi, 2017). The Stackelberg structure is a leader-follower structure,
where there is a difference in the order of action between different subjects (Sherali, 1984; Van
Damme &Hurkens, 1999; Van Hoesel, 2008). Previous research has looked into the possibil-
ity of utilizing Stackelberg structures to organize carbon trading markets (Hou et al., 2024;
Nie et al., 2022), which has prompted us to consider Stackelberg structures as a solution for
data markets. However, an inherent challenge when we employ the Stackelberg structure in
data markets involving data exchanges is that the traditional leader-follower structure may
not be able to reflect the market interaction between data exchanges, data suppliers, and data
demanders properly (Jiang et al., 2021; C. Li et al., 2023). To address this problem, we propose
a leader-intermediate leader-follower type three-stage Stackelberg data market framework.
Further work on intermediate leaders can be found in Fang et al. (2018) and He et al. (2023)
and the references therein.

To solve the second difficulty, we present an efficient pricing approach for data markets
centered on data exchanges. Through a game theory-based pricing approach, the profits of
the data exchange, the data supplier chosen by the demander, and the data demander can all
be maximized. Profits earned by data exchange can be enhanced even further by introduc-
ing incentives for competitiveness. The game pricing process can be carried out quickly and
efficiently, giving advantages, fairness, and incentives to participants.

The major contributions of this study are summarized below.

(1) In this research, we use the Stackelberg model to generate a data market structure cen-
tralizing data exchange. To address the difficulties of fairness, information asymmetry,



STATISTICAL THEORY AND RELATED FIELDS 3

and efficiency in data exchange-centered data markets, we suggest a three-stage Stack-
elberg architecture based on leaders, intermediate leaders, and followers.

(2) We suggest an optimal pricing approach for data marketplaces centralized within data
exchanges. Notably, we use a Stackelberg game to jointly maximize the profitability of
the data exchange, the data supplier selected by the demander, and the data demander.
In this game, the data exchange serves as the leader, matching supply and demand and
charging a commission for its services. Data suppliers operate as intermediate leaders,
determining the unit price of their data goods. The data demander works as a follower,
selecting who to trade with and how much data to purchase.

(3) Using backward induction, we first investigate the optimal amount of data to purchase
in the third stage. The second stage is to investigate the pricing strategies of data sup-
pliers. Finally, we determine the optimal commission rate to be charged by the data
exchange in the first stage. We examine the competition among data providers and pro-
pose a Perfectly Competitive Pricing Approach (PCPA). We demonstrate that both the
Independent Pricing Approach (IPA) and the PCPA have Stackelberg equilibria.

(4) We provide comprehensive numerical simulations to evaluate the performance of the
suggested pricing approaches, and the numerical results show that our proposed PCPA
is effective and efficient for data trading in data exchanges.

The remainder of this paper is organized as follows. Section 2 presents related research.
In Section 3, we introduce an optimal pricing approach for the data market by establishing
a Stackelberg game framework and applying backward induction to solve both the IPA and
the PCPA. Section 4 then presents a detailed numerical analysis and performance evaluation
of our pricing models. Finally, in Section 5, we conclude with a summary of our research
findings.

2. Related work

With the advent of the big data era, data products from diverse sources have become valu-
able commodities. Although studies on the economics of data products are still in their early
stages, numerous scholars are working on issues such as data valuation and trade systems.
Several data trading market structures have been developed. Zhao et al. (2019) presented a
blockchain-based fair data trading mechanism for big data markets. The mechanism uses
techniques such as ring signatures, double authentication to avoid signatures, and similarity
learning to ensure transactional data availability, data provider privacy, and data provider-
consumer fairness. Yu et al. (2017) employed the prospect theory (PT) model in behavioural
economics, with expected utility theory (EUT) as a specific example, to analyze the mobile
data transaction problem under the uncertainty of future data demand. However, the above
data market model may fail when used in data markets that include data exchanges, which
are typically centralized and have high data demand.

Recently, various research has looked into the possibilities of non-financial solutions
based on the Stackelberg architecture, centralized organizations, and multi-stage games. Lu
et al. (2018) present a data-driven Stackelberg market method for coordinating power dis-
patch acrossmany virtual power plants. The authors demonstrate the approach’s effectiveness
using a case study of a renewable energy generation project and a distribution test system in
China. Liu and Li (2021) evaluate two community market models: manager-based energy
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markets and peer-to-peer (P2P) energy trading. The quantitative comparison of social wel-
fare, total payments, and energy transactions reveals that the manager-based energy market
supports energy transactions within the community while also allowing for trade with other
communities. Dai et al. (2024) provide an three-phase techno-economic framework aimed
at capitalizing on the trend of increased integration of renewable energy sources into the
power system to create demand for flexible services. The framework seeks to capitalize on
the adaptability of demand-side resources such as IoT appliances, battery-integrated rooftop
solar panels, and smart charging systems for electric vehicles. These findings indicate that
Stackelberg gaming is critical for centralized non-financial solutions. However, there is a lack
of effective pricing approaches, particularly for data markets centered on data exchanges.

Currently, various pricing strategies are employed in the global data market. Accord-
ing to Muschalle et al. (2013), these strategies can be grouped into six major categories:
free data strategy, usage-based pricing, package pricing (an advanced form of usage-based
pricing; see Kantere et al., 2011; Kushal et al., 2012), uniform pricing, two-part tariff, and
freemium strategy. Designing an effective pricing model for data commodities requires
careful consideration of both the market structure and the specific pricing approaches
adopted.

Existing research in data market pricing models has yielded a variety of findings using
various data pricing strategies. Xu et al. (2023) systematically outlined the three key issues
of data rights, pricing strategy, and privacy calculation to give a theoretical foundation for
the development of trustworthy AI systems. On this foundation, Liu et al. (2019) developed
a blockchain-enabled edge cloud architecture to effectively solve the transaction execution
problem, while Niu et al. (2020) proposed a dynamic pricing model with reserve price con-
straints and online optimization capability for both linear and nonlinear market scenarios.
However, none of the preceding research has fully examined the existence of data exchanges
or the rivalry effect among data owners. As a result, this paper presents a market model
centered on data exchanges, develops a structured pricing approach based on the Stackel-
berg game (Xiao et al., 2020), and, for the first time, introduces the profitability model of
data exchanges and data supplier market competition into the data trading system, breaking
through the limitations of traditional pricing strategies.

To better position our work within the current literature, we clarify its marginal con-
tribution in comparison to the key references. To the best of our knowledge, our study is
the first to use the Stackelberg game framework to simulate both data provider competi-
tion and data exchange profitability, extending prior static or two-party pricing models. In
addition, we address a gap in simulating competitive pricing among data providers in central-
ized exchanges. To that goal, we provide a mathematical expression for expected utility. This
approach improves the operational feasibility of the analysis while retaining its generality.

3. Optimal pricing approaches for the datamarkets

In the data market, data consumers obtain essential data by paying fees to data providers.
The challenge of data pricing lies in determining the optimal price that maximizes the prof-
its of all parties involved in the transaction. This section conceptualizes the pricing problem
through the lens of a Stackelberg game framework. Within this approach, the data exchange
assumes the role of the leader, establishing the pricing strategy for transaction commissions.
Data providers function as intermediate leaders, determining the unit prices of their respec-
tive data offerings. Data consumers, as followers, then make purchasing decisions based on
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these set prices. This structured approach allows for a comprehensive analysis of the strategic
interactions among the various stakeholders in the datamarket, ultimately helping us identify
the best pricing strategies.

3.1. Framework for designing game rules

Imagine the Yangtze Data Exchange (YDE) a centralized platform operating in Shenzara’s
(a hypothetical country) digital economy hub. When a data transaction cycle begins, YDE
first establishes its commission strategy. Once the commission structure is published, data
providers such as SmartCityTech, GreenGrid Analytics, and HealthStat Solutions list their
available datasets on the platform. These datasets include real-time traffic flows, smart meter
energy usage, and anonymized hospital data. Each provider sets its own pricing, metadata,
access conditions, and data quality indicators. Data demanders such as e-commerce plat-
forms, logistics firms, and urban planning agencies browse the listings and assess what best
fits their needs. For instance, a logistics companymay purchase both traffic and energy usage
data to optimize delivery schedules and reduce operational costs. Based on the metadata and
pricing, they decide on a purchasing strategy. As a result of abstraction and simplification, the
data market transaction structure (shown in Figure 1) is modelled to include multiple data
providers, a representative data consumer, and a data exchange platform. This framework is
based on two key considerations. First, non-competition among data consumers stems pri-
marily fromdata’s non-competitive characteristics, i.e., the same data can be used bymultiple
consumers at the same time without affecting each other, e.g., different enterprises can use
the same dataset for analysis and decision-making to improve their competitiveness without
reducing the data’s value. Second, the monopolistic nature of the data exchange in the data
market is caused by technical barriers (Damsgaard&Lyytinen, 1998), economies of scale, and
network externalities. Data collection, storage, processing, and analysis require strong techni-
cal assistance and significant capital investment, which only a few organizations can provide,
resulting in technical barriers and economies of scale. The more clients a data exchange has,
the more valuable and appealing its data becomes, making it easier for large data exchanges
to acquire customers and data resources while also consolidating their market position. As a
result, we assume amonopolistic data exchange to properly examine its impact on themarket
and resource allocation efficiency.

Let N represent the number of data providers for a specific data market, defined as the
setN = {1, . . . ,N}. In this transaction model, the data exchange acts as a platform connect-
ing data providers and the data consumer. It supplies the consumer with information about
the data providers and facilitates their transactions. In exchange for this service, the data
exchange charges a transaction commission at a rate of τ from the data providers.

For any given consumer (i.e., the data consumer), each data provider i ∈ N establishes
an optimal price pi for their data, while the consumer determines their purchasing strategy,
specifically the quantity of data to acquire. Let the unit price and quantity of data purchased
from provider i be denoted as pi and xi, respectively. The optimal price and quantity of data
purchased fromprovider i are represented as p∗

i and x
∗
i , respectively. The optimal commission

rate set by the data exchange is τ ∗, with an upper limit τmax often regulated by government
authorities.

This paper denotes the minimum data quantity required by the data consumer as xmin.
Let the cost per unit of data for data provider i be ci. Correspondingly, the data consumer
sets a maximum price they are willing to pay, denoted as pmax. Let x := (x1, . . . , xN) and
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Figure 1. Optimal pricing approach based on Stackelberg game theory.

x∗ := (x∗
1, . . . , x

∗
N) represent the overall quantity profile and the optimal quantity profile of

data purchased, respectively. Similarly, p := (p1, . . . , pN) and p∗ := (p∗
1, . . . , p

∗
N) represent

the price profile and the optimal price profile.
In our approach, transactions between data consumers and data providers are facilitated

by a data exchange and modelled as a three-stage Stackelberg game. In the first stage, the
data exchange sets the commission rate. In the second stage, data providers establish their
unit prices for the data. In the final stage, data consumers make purchasing decisions based
on these prices. Figure 1 illustrates the structure of this Stackelberg game and outlines the
pricing process.

In this paper, we adopt the utility function for data as defined by Jiao et al. (2018) and
express it as follows:

q(xi) = α1 + α2 ln(xi + 1), (1)

whereα1 andα2 (themarginal utility parameter for data) are curve-fitting parameters derived
from the empirical approach. Correspondingly, the utility function for the data consumer is
formulated by subtracting the price from the data utility function:

DUi(xi, pi) = α1 + α2 ln(xi + 1) − xipi. (2)

Here, the data consumer determines xi, the quantity of data to purchase from data provider
i, and selects the provider based on the principle of utility maximization. Using a backward
induction approach, we decompose the problem into two subgames. Problem 1 represents
the data consumer’s decision stage, in which the consumer responds to both the prices set
by the data providers and the commission determined by the data exchange. The data con-
sumer aims to maximize their utility by selecting the optimal quantity of data from provider
i, subject to a minimum purchase quantity.
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Problem 3.1 (Consumer’s subgame for provider i):

max
xi≥xmin

DU(x, p) = max
i∈N

{
max

xi≥xmin
DUi(xi, pi)

}
, (3)

where DU(x, p) is the maximum of the function value DUi(xi, pi) for all individuals i in the
collectionN .

Problem 3.2 corresponds to the data exchange’s commission decision stage. In this stage,
the data exchange seeks to maximize its utility by choosing an optimal commission rate τ . To
be more specific, the utility of the data exchange is defined as its expected economic profit:

EU(τ , x, p,ω) = τE[xp] − C = τ

N

( N∑
i=1

ωixipi

)
− C, (4)

where C is the operating cost of the data exchange and ωi is the market competitiveness of
data suppliers i. ω := (ω1, . . . ,ωN) indicates data providers’ market competitiveness, which
is determined by customer preferences influenced by supplier factors (reflected in transaction
probabilities). To standardize each enterprise’s competitiveness for comparison and analysis
in a consistent quantitative dimension, we have

∑N
i=1 ωi/N = 1. To maximize its utility, the

data exchange determines the commission rate τ , leading to a subgame in the optimal pricing
approach for the data market.

Problem 3.2 (Exchange’s subgame in pricing approach):

max
τ∈(0,τmax]

EU(τ , x, p,ω). (5)

In our model, the pricing process unfolds over three interconnected stages. In Stage 3 (Prob-
lem 3.1), data consumersmaximize their utility by selecting the optimal quantity of data from
each provider, subject to a minimum purchase requirement. Their purchasing decisions are
influenced by the unit prices that data providers set in Stage 2. In Stage 1 (Problem 3.2), the
data exchange – acting as the leader – determines its commission rate to maximize its overall
utility, a decision that in turn affects both the pricing strategies of the data providers and the
purchasing choices of the consumers.

Notably, this paper examines two optimal pricing approaches that differ based on whether
competition among data providers is considered: the Independent Pricing Approach (IPA)
and the Perfect Competition PricingApproach (PCPA). As a result, the optimization problem
in Stage 2 varies between these two models. To proceed, we define Problems 3.3 and 3.4
to represent the data providers’ pricing decision stage and outline its formulation for each
approach.

3.2. Independent pricing approach (IPA)

We begin our analysis with the Independent Pricing Approach (IPA). In this framework,
data owners, or data element providers, are equally competitive and they establish their
pricing strategies independently, without consideration of the strategies employed by other
providers. Therefore, competitiveness of data suppliers is equal andwe denoteωi = 1, i ∈ N .
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The second stage of the Stackelberg game is consequently subdivided into a series of sub-
games involving each data provider and the demand side. The utility for data supplier i
is defined as the revenue generated from sales minus the associated costs, which can be
mathematically expressed as follows:

SUi(τ , xi, pi) = (1 − τ)xipi − xici. (6)

To maximize their utility, provider i determines the price pi, thereby establishing a subgame
for providers within the Independent Pricing Approach (IPA) framework. This subgame can
be structured as follows.

Problem 3.3 (Data suppliers’ subgame in IPA):

max
pi∈[ci,pmax]

SUi(τ , xi, pi), i ∈ N . (7)

Problems 3.1, 3.2, and 3.3 collectively constitute the IPA Stackelberg game. The primary
objective of this game is to identify the Stackelberg equilibrium, where the utility of the leader
is maximized in conjunction with the optimal response strategies adopted by the followers.
To proceed, we define the sufficient conditions for Equilibrium Solution (x∗, p∗, τ ∗) for IPA
model as below to ensure that the equilibrium solution represents a stable state where all par-
ties in the market optimize their respective utilities under the framework of the Independent
Pricing Approach.

Definition 3.1 (Independent Pricing Approach Equilibrium Solution): Let (x∗, p∗, τ ∗)
be defined as the equilibrium solution of the Independent Pricing Approach (IPA) if the
following conditions are satisfied for all i ∈ N .

• The expected utility of the data exchange at the equilibrium must be at least as great as
any alternative utility derived from different commission rates:

EU(τ ∗, x∗, p∗,ω) ≥ EU(τ , x∗, p∗,ω).

• The utility of data provider i at the equilibrium price and quantity must be greater than or
equal to their utility under any other pricing strategy:

SUi(τ
∗, x∗

i , p
∗
i ) ≥ SUi(τ

∗, x∗
i , pi).

• The utility derived by the data consumer from the equilibrium quantity and price must be
at least as high as that derived from any alternative pricing:

DU(x∗, p∗) ≥ DU(x, p∗).

We utilize the backward induction to examine the Independent Pricing Approach (IPA)
Stackelberg game, which can be systematically decomposed into a sequence of subgames
involving data element demanders, data providers, and the data exchange.Within this frame-
work, the data exchange initiates the process by setting the commission rate. Subsequently,
each data provider independently engages in a subgame with demanders, determining their
pricing strategies in response to the commission rate. This structure facilitates a detailed
analysis of pricing and purchasing decisions, ultimately achieved through the derivation of
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a Bayesian Nash equilibrium for each subgame. To be more specific, the IPA Stackelberg
game is broken down into three distinct stages, starting with consumer choices in Stage 3,
then supplier pricing in Stage 2, and finally the commission decision in Stage 1. (All detailed
calculations for each stage are included in the Appendix 1).

Through this structured approach, the backward induction analysis offers a comprehen-
sive framework for understanding optimal pricing and purchasing behaviour within the IPA
approach, highlighting the strategic interactions between the data exchange, suppliers, and
demanders.

3.3. Perfect competitive pricing approach (PCPA)

In contrast to the Independent Pricing Approach (IPA), the Perfect Competition Pricing
Approach (PCPA) assumes that data providers operate in a perfectly competitive market.
In this setting, individual providers have limited pricing power and must accept the market
price determined by overall supply and demand dynamics.

In the data market, pricing rivalry among data suppliers must be considered. There are
numerous data suppliers, and their data products or services are substitutable to some degree,
so PCPA may better represent the market operation mechanism. The PCPA allows for in-
depth analysis of how suppliers set pricing based on costs, market demand, and rivals’
strategies, which influences the supply volume and market flow of data. This contributes to
the discovery of the data market’s price formation law, provides a theoretical foundation for
rational pricing, and so promotes the market’s healthy and orderly development.

In this pricing framework, competition among data providers is approached through their
respective subgames. Each provider independently establishes their price with the objective
of maximizing profits while competing with their peers for market share. It is important to
note that if a data provider sets a lower price for their data offerings, they can enhance their
competitiveness within the market. We define the competitiveness of provider i as follows:

ωi(pi) =
N
pi∑N
j=1

1
pj

= N

1 +
(∑

j�=i
1
pj

)
pi
; (8)

this definition implies that a lower price pi results in a higher ωi, indicating greater compet-
itiveness.

The purchasing willingness of data consumers is inherently linked to the competitiveness
of data providers. Therefore, the utility of data provider i is defined as the product of their
competitiveness and profit:

�i(pi, p−i, xi) = (1 − τ)ωi(pi)xipi − ωi(pi)xici, (9)

where p−i is the data unit price profile of data suppliers other than data supplier i.
In the context of the Perfect Competition Pricing Approach (PCPA), data suppliers deter-

mine the unit price p to maximize their utility as defined in Equation (9). This decision
process forms the subgame for providers within the PCPA framework, structured as follows.
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Problem 3.4 (Data supplier’s subgame in PCPA):

max
pi∈[ci,pmax]

�i(pi, p−i, xi), i ∈ N . (10)

Problems 3.1, 3.2, and 3.4 collectively form the Stackelberg game within the context of the
Perfect CompetitionPricingApproach (PCPA). The primary objective of this game is to iden-
tify a Stackelberg equilibrium, wherein the leader’s utility is maximized while the followers
adopt their optimal response strategies. Similarly, we define the sufficient conditions for Equi-
librium Solution (x∗, p∗, τ ∗) for PCPAmodel as below to ensure that the equilibrium solution
represents a stable state where all parties achieve optimal utility in the data market under the
framework of the Perfect Competition Pricing Approach.

Definition 3.2 (Perfect Competition Pricing Approach Equilibrium Solution): Let
(x∗, p∗, τ ∗) be defined as the PCPA if the following conditions are satisfied for all i ∈ N .

• The expected utility of the data exchange at the equilibrium must be at least as great as
any alternative utility derived from different commission rates:

EU(τ ∗, x∗, p∗,ω) ≥ EU(τ , x∗, p∗,ω).

• The utility of data provider i at the equilibrium price and quantity must be greater than or
equal to their utility under any other pricing strategy:

�i(p∗
i , p

∗−i, x
∗
i ) ≥ �i(pi, p∗−i, x

∗
i ).

• The utility derived by the data consumer from the equilibrium quantity and price must be
at least as high as that derived from any alternative pricing:

DU(x∗, p∗) ≥ DU(x, p∗).

The conditions outlined above ensure that the equilibrium solution (x∗, p∗, τ ∗) represents
a stable state where all parties achieve optimal utility in the data market.

This paper uses the backward induction to analyze the PCPA Stackelberg game. Like the
IPA model, the game is broken down into subgames involving data consumers, providers,
and the data exchange, with refined Bayesian equilibria derived for each. Since the con-
sumer subgame in PCPA mirrors that in IPA – using the same optimal response function
(Equation (A3)) – we focus on the pricing strategies in the first and second stages.We present
our conclusion by the following theorem.

Theorem 3.1: There exists a unique subgame-refined Nash equilibrium in the second and first
stage.

Proof: See Appendix 2. �

4. Numerical analysis and performance evaluation of pricing approaches

In this section, we use comprehensive numerical simulations to evaluate the performance
of the proposed optimal pricing models, IPA and PCPA. We compare the performance of
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these two approaches, focussing especially on the advantages that competition among data
suppliers brings under the PCPA model. To demonstrate the impact of various parameters
on performance, we examine a scenario with a group of N data suppliers who sell a specific
type of data when requested by a consumer.

For our experiments, we use the following default settings: we set α1 = 0 (based on the
‘pure market’ theoretical paradigm, which isolates the effects of internal market dynam-
ics from external influences) and N = 10 (a commonly used number in market simulation
focussing on pricing strategies and competition dynamics). We assume that ci has a normal
distribution,N(10, 9). The variance ensures that the cost values lie within the 95% confidence
interval of [4, 16]. This range captures the diversity seen in real markets–from low-cost auto-
mated data acquisition to high-cost manual labelling. To ensure statistical significance, we
run the simulation 1000 times for each supplier’s unit cost, order the results from smallest to
largest to simulate supplier heterogeneity, and then take the average over all simulations.

Additionally, we analyze the parameter α2, which represents the sensitivity of the data’s
utility to changes in its quantity, to understand its effect on overall performance. To reflect
a range of real-world data demand situations, we change the value of α2 between 20 and 45
to model demanders’ utility sensitivity, ranging from low in typical analysis to high in data-
intensive applications. Finally, we compare the performance of IPA and PCPA, highlighting
the benefits of competition among data suppliers as demonstrated in the PCPA model.

Numerical simulation experiments show that, as compared to the Independent Pricing
Approach (IPA), introducing competition via the Perfect Competition Pricing Approach
(PCPA) can enhance transaction volume in the data market, hence, increasing demander
utility. At the same time, while competition may result in lower data transaction prices, sup-
pliers’ market share will increase as the volume of data grows. Finally, we discover that the
Perfect Competition Pricing Approach (PCPA) can significantly increase the profitability of
data exchanges while improving the welfare of society. As a result, we feel it is a better pricing
model for existing data exchanges.

4.1. Utility analysis of the data demander

We examine the utility of data demanders under both the PCPA and IPA, focussing on the
effects of competition among data suppliers and the sensitivity of utility to changes in the
data volume. Figure 2 shows a positive correlation between the variance in equilibriummar-
ket competitiveness ({ωi}i∈{1,2,...,N}) under the PCPA and the number of data suppliers. This
indicates that as the number of suppliers increases, the degree of competition rises. Eco-
nomically, more suppliers mean that market share is more thinly spread, reducing individual
profit margins and prompting suppliers to invest more in competitive pricing. We compare
the performance of the PCPA – where suppliers compete – with the IPA, in which there is no
competition among suppliers.

Figure 3 illustrates that under the PCPA, market competition among suppliers leads to
better outcomes for demanders, including higher utility and more efficient data usage. Sup-
pliers are motivated to improve efficiency and lower costs, resulting in increased transaction
volumes and greater benefits for all market participants. To bemore specific, Figure 3 consists
of two parts, each illustrating the effects of the number of data suppliers N and the marginal
utility parameter α2 on demander utility and transaction volume under the IPA and PCPA.
The left part of the figure shows how the optimal utility of data demanders changes with N
and α2. Under the PCPA, demanders achieve higher utility compared to the IPA, indicating
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kln(N)

Figure 2. The relationship between the variance of market competitiveness and the number of suppliers.

Figure 3. The impact of competition among data suppliers, as well as the marginal effect of data utility,
on the data demander’s optimum utility and the amount of data purchased.

that competition among suppliers benefits demanders. As α2, i.e., the elasticity of demand
for data, gradually grows, so does the utility of the demander, as data becomes increasingly
valuable to them. The right part of the figure highlights the influence of N and α2 on the
total amount of data purchased. Under PCPA, the volume of data purchased increases sig-
nificantly with N, driven by greater competition among suppliers. In contrast, under IPA,
the volume of data remains relatively unchanged with increasingN, as suppliers do not com-
pete. As α2 increases, the amount of data purchased under the PCPA exceeds that of the IPA.
This implies that under the PCPA, competition incentivizes suppliers to deliver more data at
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a cheaper price, allowing the demand side with high data demand elasticity to use the data
more effectively.

4.2. Utility analysis of the chosen data supplier

Next, we look at the supply of the provider selected by the demander under the PCPA and
IPA. We employ utility and data unit pricing to evaluate the supply of the provider selected
by the demander.

Figure 4 illustrates how the number of data suppliers N and the marginal utility param-
eter α2 affect the utility and unit price of the demander-selected supplier under the IPA
and PCPA. The figure demonstrates that increased market competition under PCPA drives
suppliers to lower prices to compete, benefiting demanders through reduced costs. At the
same time, suppliers can achieve higher utility by selling larger volumes of data, leveraging
economies of scale. As market demand elasticity α2 rises, providers can justify higher pric-
ing and increasing profits, highlighting the benefits of competitive market frameworks like
PCPA.

The left plot focuses on supplier utility. The utility of the demander-selected supplier
increases withN under both IPA and PCPA.However, the utility is significantly higher under
PCPAdue to enhancedmarket competition. In the PCPAmodel, competition forces suppliers
to reduce their unit prices while increasing the volume of data sold. The demander-selected
supplier, benefiting from greater market competitiveness, can sell more data and achieve
higher profits, even at reduced prices. As α2 increases – which reflects how sensitive demand
is to price – the selected supplier gains more utility. This means that when demand becomes
more responsive, the market price and the supplier’s profit tend to rise as well. On the right,
the unit price of data under PCPA is consistently lower than that under IPA. This differ-
ence arises because competition in the PCPA compels all suppliers to cut prices to attract
demanders. However, as α2 increases, the selected supplier can still charge a higher price.
This happens because greater demand responsiveness enables them to offer data at a price
that better reflects its value, capturing more profit per unit sold.

Figure 4. The impact of competition among data suppliers as well as data marginal output on the utility
and unit price of the selected data supplier.
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4.3. Evaluation of the data exchange’s capacity tomarket-based operation (as
measured by profitability)

We then look at how data exchanges can transition to market-based operation under the
PCPA and IPA. To assess the potential of the data exchange to market-based operation, we
use utility and unit revenue metrics. The unit revenue of a data exchange is defined as the
product of the demander’s chosen supplier’s unit price and the transaction fee rate charged
by the exchange, and the utility of the data exchange is computed using Equation (4).

Figure 5 looks at the utility and unit revenues of data exchanges under the IPA and PCPA.
The figure demonstrates that under PCPA, data exchanges gain higher utility by adapting to
market competition, even though per-unit revenues are lower. In addition, as α2 increases,
the data exchange earnsmore profit. This indicates thatmarket-basedmodels work especially
well when buyers are more responsive to price changes.

The right plot examines the unit revenues of data exchanges, showing that they are
lower under PCPA compared to IPA. This reduction reflects the impact of competition,
as suppliers in PCPA lower their prices to remain competitive, leading to decreased per-
unit revenues for the exchange. However, despite these lower unit revenues, the left plot
reveals that data exchanges achieve higher overall utility under PCPA. The utility remains
relatively steady with changes in the number of data suppliers under both IPA and PCPA,
indicating it is largely unaffected by market competition. Nevertheless, the utility is con-
sistently higher under PCPA, demonstrating that competition benefits the exchange by
driving more transactions. As α2 increases, the utility of the data exchange also rises
under both models. This means that exchanges function more effectively in markets where
buyers are highly responsive to price, reinforcing the value of adopting a market-based
model in such environments. The reason for this paradox is that, under the PCPA, data
exchanges can use their informational advantage as the Stackelberg game leader to adapt
their commission pricing to the perfectly competitive market, allowing them to profit from
competition while mitigating the negative impact of lower per-unit revenues on the data
exchange.

Figure 5. The effect of data supplier competition and the data marginal utility parameter on the data
exchange’s utility and unit revenue.
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4.4. Social welfare analysis

The Social Welfare (SW) measure is an overall evaluation of the data market that reflects
the pricing approaches’ reliability and performance. We define the SW function for the data
market as follows:

SW = α1 + α2 ln(x + 1) − Qxc, (11)

where x and c represent the amount of data purchased by the data demander and the unit data
cost of the data supplier selected by the demander, respectively.Q is the parameter describing
the effect of cost aversion on social welfare.

Figure 6 illustrates the effect of the marginal utility parameter α2 and the social wel-
fare priority parameter Q on social welfare (SW) under the IPA and PCPA. SW serves as
a comprehensive measure of the data market’s performance and reliability, balancing utility,
data usage, and cost efficiency. Below are some key observations. For a given Q, irrespec-
tive of IPA or PCPA, SW improves as α2 grows. A greater α2 implies increased data demand
elasticity, which offsets the increased costs associated with more data usage, resulting in an
overall improvement in SW. Second, the parameter Q reflects the emphasis on cost aver-
sion in the SW function. As Q rises, the contours reflect a slowing of SW growth as the
perceived increase in costs begins to undermine the beneficial impact of higher data usage.
However, even for highQ, SW continues to improve with rising α2. Last but not least, across
all values of Q and α2, SW under PCPA is consistently higher than that under IPA. This
demonstrates that the PCPA approach enables more effective data allocation by fostering

Figure 6. The effect of the data’s marginal utility parameter on SW with distinct priorities (high utility or
low-cost priority, as measured by Q).
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competition among suppliers, which reduces integration costs andmaximizes the use of data.
Overall, the figure highlights that the PCPA model outperforms the IPA model in terms of
social welfare, regardless of the cost aversion parameter Q. This suggests that adopting the
PCPA approach can enhance the efficiency and utility of the data market while promoting
better societal outcomes through improved data management and allocation.

5. Conclusions and future work

This paper successfully develops an efficient pricing approach for datamarkets using Stackel-
berg game theory. The approach seeks to optimize trade behaviour within the data exchange
while balancing the interests of suppliers, the demand side, and the data exchange itself. This
study, using a well-structured three-stage game framework, comprehensively addresses the
issues of data supplier pricing strategies, data demander purchasing behaviours, and data
exchange commission strategies, providing a holistic solution for efficiently managing data
markets.

There are some limitations to this paper, most notably that it focuses solely on the revenue
level of data exchanges without fully accounting for the costs and expenditures invested in
developing the datamarket, which, to some extent,makes the pricing of data exchanges in the
research results appear relatively high, with the risk ofmarket distortion.While this errormay
have an impact on pricing accuracy, it does not call into question the paper’s central thesis,
which is the viability and general approach of Stackelberg game pricing for data exchanges.
Subsequent research will focus on data exchanges’ investments in data marketplaces, to offer
a more exact and refined pricing approach.

Numerical simulations demonstrate that the PCPA surpasses the IPA in various dimen-
sions. The PCPA not only lowers data prices but also optimizes the competitive environment
for data suppliers, encouraging them to improve their market competitiveness and extend
their market share. Furthermore, data exchanges can increase their profitability by deliber-
ately altering transaction commission rates, which helps to marketize data exchanges. We
should highlight, however, that in early markets with limited supplier rivalry or unclear laws,
the IPA may be more appropriate because it assumes isolated pricing behaviour. In con-
trast, the PCPA becomes increasingly appropriate as markets mature, competition grows,
and transparency procedures are implemented.

Based on our findings, we provide the following policy recommendations.

(1) Setting reasonable transaction commission rates: Data exchanges should set reasonable
transaction commission rates to maximize profits and promote healthy competition.
This will encourage more data suppliers and demanders to enter the market, increasing
market efficiency through competition.

(2) Technical innovation: Data suppliers should prioritize technical innovation to lower
prices and raise the marginal utility of data. As data becomes an increasingly significant
factor in the digital economy, suppliersmust continue to innovate to remain competitive.

(3) Selection of data products with high marginal utility: To optimize resource allocation,
the demand side of data should prioritize data products with a high marginal utility.
Demand-side purchasing decisions have a considerable impact on the healthy growth
of the data factor market, and choosing data products with high marginal value can
increase factor resource usage efficiency and foster market competition.
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(4) Strengthening market regulation: To avoid unfair competition and ensure the stability
and healthy development of data factor markets, government regulation must be rein-
forced. Governments have an important role in guaranteeing fairmarket behaviour, pro-
tecting consumer rights, and supervisingmarket operations to keepmarkets transparent
and fair.

In conclusion, this work offers theoretical direction and practical techniques for datamar-
ket participants, promoting market health and efficient data resource allocation. This study
brings useful knowledge to the management field by providing an optimal pricing approach.
It also provides a new perspective and framework for data management and trade in the
digital economy.
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Appendices

Appendix 1. Detailed calculations for IPA equilibrium solution

(1) Demand-side purchasing decision in the third stage: Given the unit price of data provider i, i.e.
pi, the consumer maximizes its utility by determining its optimal buying strategy x∗

i to maximize its
utility.

The first and second order derivatives of the demander’s utility in Equation (2) with respect to xi
are as follows.

∂DUi

∂xi
= α2

1 + xi
− pi; (A1)

∂2DUi

∂x2i
= − α2

(1 + xi)2
< 0. (A2)

These derivatives show that DUi(xi, pi) is a strictly upper convex function. Solving for ∂DUi
∂xi = 0 can

obtain the optimal response of the data demander function as follows:

x∗
i = α2

pi
− 1. (A3)

Bringing Equation (A3) into DUi(xi, pi), we obtain the optimal utility of the data demander for i:

DUi(x∗
i , pi) = pi − α2 ln(pi) + α1 − α2 + α2 ln(α2). (A4)

Based on Equation (A4), the utility of the demander under independent pricing is solved as

DU(x, p) = max
i∈N [pi − α2 ln(pi) + α1 − α2 + α2 ln(α2)]. (A5)

(2) The supplier’s second-stage pricing strategy is as follows. Based on the demander’s optimal pur-
chase strategy for each data supplier in the third stage, the data supplier provides its utility-maximizing
pricing strategy. By entering Equation (A3) into (6), the utility of data supplier i can be rewritten as

SUi(τ , x∗
i , pi) = (1 − τ)x∗

i pi − x∗
i ci = (1 − τ)α2 + ci −

[
(1 − τ)pi + α2ci

pi

]
. (A6)

SUi(τ , x∗
i , pi)’s first and second order derivatives of pi are as follows:

∂SUi

∂pi
= α2ci

p2i
+ τ − 1, (A7)

∂2SUi

∂p2i
= −2α2ci

p3i
< 0. (A8)
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Therefore, SUi(τ , x∗
i , pi) is a strictly upper convex function. Solving for

∂SUi
∂pi = 0 can obtain the optimal

pricing strategy for the data supplier as follows:

p∗
i =

√
α2ci
1 − τ

. (A9)

(3) Data Exchange Pricing Strategy in Stage 1: Based on the demander’s optimal response and the
supplier’s optimal pricing from Stages 3 and 2, the data exchange generates a pricing strategy that max-
imizes the utility. Filling Equations (A3) and (A9) into (4) can rewrite the utility of the data exchange
as follows:

EU(τ , x∗, p∗,ω) = τE[x∗p∗] − C = τ

N

( N∑
i=1

x∗
i p

∗
i

)
− C

= α2τ −
∑N

i=1
√
ci

N

√
α2

1 − τ
τ − C. (A10)

EU(τ , x∗, p∗,ω)’s first and second order derivatives of τ are as follows:

∂EU
∂τ

= α2 −
√

α2
∑N

i=1
√
ci

N
· 1 − τ

2

(1 − τ)
3
2
; (A11)

∂2EU
∂τ 2

= −
√

α2
∑N

i=1
√
ci

N
· 1 − τ

4

(1 − τ)
5
2

< 0. (A12)

In summary, EU(τ , x∗, p∗,ω) is a strictly upper convex function. Solving ∂EU
∂τ = 0 and the optimal

pricing strategy for the data exchange is obtained as follows:

τ ∗ = 3

√√√√√27σ + 1
(12σ)3

− 63σ 2 + 62σ + 1
(12σ)3

+ 3

√√√√−
√
27σ + 1
(12σ)3

− 63σ 2 + 62σ + 1
(12σ)3

+ 12σ − 1
12σ

, (A13)

where σ = α2N2(∑N
i=1

√
ci

)2 is the auxiliary operator.

Appendix 2. Proof of Theorem 3.1

Proof: First, establish the existence of the second-stage subgame-perfect Nash equilibrium. For ease
of computation, define the data-assisted unit price profile b =

{
bi = 1

pi | i ∈ N
}
. Correspondingly,

there are data optimal auxiliary unit price profiles b∗ =
{
b∗
i = 1

p∗
i
| i ∈ N

}
and the data-assisted unit

price profiles of data suppliers other than data supplier i, which is b−i =
{
bj = 1

pj | j �= i
}
. Given the

demander’s optimal purchasing strategy for supply i, i.e. x∗
i , then the utility of supplier i in Equation (9)

can be rewritten as

�i(bi, b−i, x∗
i ) = N∑N

j=1 bj
(1 − τ)(α2bi − 1) − Nbi∑N

j=1 bj
ci(α2bi − 1)

= − N∑N
j=1 bj

{α2cib2i − [ci + (1 − τ)α2]bi + 1 − τ }. (A14)
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Define the bi’s space of strategies as
[

1
pmax

, 1ci
]
, which is a nonempty compact subset of the Euclidean

space. �i(bi, b−i, x∗
i ) is continuous in

[
1

pmax
, 1ci
]
. Take the �i(bi, b−i, x∗

i )’s first and second order
derivatives of bi to prove its upper convexity, written as

∂�i

∂bi
= − N(

bi +∑j�=i bj
)2
⎧⎨
⎩α2cib2i + 2α2ci

⎛
⎝∑

j�=i

bj

⎞
⎠ bi

−[ci + (1 − τ)α2]

⎛
⎝∑

j�=i

bj

⎞
⎠− 1 + τ

⎫⎬
⎭ , (A15)

and

∂2�i

∂b2i
= − 2N(

bi +∑j�=i bj
)3
⎧⎨
⎩α2ci

⎛
⎝∑

j�=i

bj

⎞
⎠

2

+ [ci + (1 − τ)α2]

⎛
⎝∑

j�=i

bj

⎞
⎠+ 1 − τ

⎫⎬
⎭

< 0. (A16)

Therefore, �i(bi, b−i, x∗
i ) is strictly convex with respect to bi and there exists subgame-refining

Nash equilibrium in the second stage. Secondly, prove the uniqueness of the subgame-perfect Nash
equilibrium in the second stage. To solve ∂�i

∂bi = 0, there is

α2cib2i + 2α2ci

⎛
⎝∑

j�=i

bj

⎞
⎠ bi −

⎧⎨
⎩[ci + (1 − τ)α2]

⎛
⎝∑

j�=i

bj

⎞
⎠+ 1 − τ

⎫⎬
⎭ = 0. (A17)

Therefore, the optimal auxiliary unit price for the data supplier is

b∗
i =

√√√√√
⎛
⎝∑

j�=i

bj + (1 − τ)

ci

⎞
⎠
⎛
⎝∑

j�=i

bj + 1
α2

⎞
⎠−

∑
j�=i

bj, (A18)

and for the world of definition of bi, i.e.
[

1
pmax

, 1ci
]
, there is an optimal auxiliary pricing functionFi(b)

for i:

b∗
i = Fi(b) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
ci
, Ei >

1
ci
,

Ei, Ei ∈
[

1
pmax

,
1
ci

]
,

1
pmax

, Ei <
1

pmax
,

(A19)

where Ei =
√(∑

j�=i bj + (1−τ)
ci

)(∑
j�=i bj + 1

α2

)
−∑j�=i bj. Recall the subgame-perfect Nash equi-

librium in the second stage as b∗ = F(b) = (F1(b), F2(b), . . . , FN(b)). By proving that the optimal
auxiliary pricing function for i is the standard function (Han et al., 2011), one can prove the uniqueness
of the second-stage subgame-perfect Nash equilibrium.

Definition A.1: A function F(b) with the following properties is called a standard function:

(1) Positivity: F(b) > 0;
(2) Monotonicity: If b ≤ b′, thenF(b) ≤ F(b′);
(3) Scale reduction: ∀λ > 1, λF(b) > F(λb).
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The following proof gives that the three properties of standard functions are satisfied forFi(b).
Firstly, according to Equation (A18), the Fi(b) > 0 is obvious.
Secondly, if b ≤ b′, then

∑
j�=i bj ≤∑j�=i b

′
j. Therefore, monotonicity can be proved by

∂Fi

∂
(∑

j�=i bj
) = 1

2

⎛
⎝
(∑

j�=i bj + (1−τ)
ci

)
(∑

j�=i bj + 1
α2

) +
(∑

j�=i bj + 1
α2

)
(∑

j�=i bj + (1−τ)
ci

)
⎞
⎠− 1 > 0. (A20)

Finally, the proof of scale-reducibility is as follows:

λF(b) − F(λb) =

√√√√√
⎛
⎝λ
∑
j�=i

bj + λ(1 − τ)

ci

⎞
⎠
⎛
⎝λ
∑
j�=i

bj + λ

α2

⎞
⎠

−

√√√√√
⎛
⎝λ
∑
j�=i

bj + (1 − τ)

ci

⎞
⎠
⎛
⎝λ
∑
j�=i

bj + 1
α2

⎞
⎠ > 0, ∀ λ > 1. (A21)

In summary, the uniqueness of the perfect Nash equilibrium of the second-stage subgame is proved by
Fi(b) satisfying the three properties of the standard function! Its equilibrium solution p∗ is satisfied:

p∗
i =

⎧⎪⎨
⎪⎩
pmax, E ′

i > pmax,
E ′
i , E ′

i ∈ [ci, pmax], i ∈ N ,
ci, E ′

i < ci,
(A22)

where E ′
i =

√(∑
j�=i

1
p∗
j

+ (1−τ)
ci

)(∑
j�=i

1
p∗
j

+ 1
α2

)
−∑j�=i

1
p∗
j
.

Finally, the following procedure is utilized to solve the first-stage data exchange optimal pric-
ing problem, and by integrating Equation (A22) into (4), the utility of the data exchange may be
represented as

EUt(τ
t , xt , pt ,ωt) = τ tE[xtpt] − C = τ t

N

⎛
⎝ N∑

i=1

N
pti∑N
j=1

1
ptj

xti p
t
i

⎞
⎠− C

= α2τ
t − Nτ t∑N

i=1

√(∑
j�=i b

t−1
j + (1−τ t)

ci

) (∑
j�=i b

t−1
j + 1

α2

)
−∑j�=i b

t−1
j

− C

= α2τ
t − Nτ t∑N

i=1

√
Bt−1
i − At−1

i τ t
− C, (A23)

where the auxiliary operator At−1
i =

∑
j�=i b

t−1
j + 1

α2
ci and the auxiliary operator Bt−1

i =
(∑

j�=i b
t−1
j +

1
ci

)(∑
j�=i b

t−1
j + 1

α2

)
. EUt(τ

t , xt , pt ,ωt)’s first and second order derivatives with respect to τ t are as
follows:

∂EUt

∂τ t
= α2 − N

∑N
i=1

√
Bt−1
i − At−1

i τ t + At−1
i

2
√
Bt−1
i −At−1

i τ t(∑N
i=1

√
Bt−1
i − At−1

i τ t
)2 , (A24)
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and

∂2EUt

∂τ t
2 = − N

St(τ t)2

N∑
i=1

[
At−1
i
[
At−1
i (1 + 2τ t) − 2Bt−1

i
]

4(Bt−1
i − At−1

i τ t)
3
2

+ At−1
i√

Bt−1
i − At−1

i τ t

⎛
⎜⎝1 + 1

St(τ t)

N∑
j=1

At−1
j

2
√
Bt−1
j − At−1

j τ t

⎞
⎟⎠
⎤
⎥⎦

≤ −N

∑N
i=1

[
At−1
i (At−1

i −2Bt−1
i )

4Bt−1
i

3
2

+ At−1
i√
Bt−1
i

(
1 + 1∑N

j=1

√
Bt−1
j

∑N
j=1

At−1
j

2
√
Bt−1
j

)]

St(τ t)2

= −N

∑N
i=1

[
At−1
i (At−1

i +2Bt−1
i )

4Bt−1
i

3
2

+ At−1
i√
Bt−1
i

(
1∑N

j=1

√
Bt−1
j

∑N
j=1

At−1
j

2
√
Bt−1
j

)]

St(τ t)2
< 0, (A25)

where the auxiliary functionSt(τ
t) =∑N

i=1

√
Bt−1
i − At−1

i τ t . Therefore,EUt(τ
t , xt , pt ,ωt) is a strictly

upper convex function. Solving for ∂EUt
∂τ t

= 0 obtains the unique optimal pricing strategy for the data
exchange. Also in the second stage, there exists a unique subgame-perfect Nash equilibrium, namely
limt→∞ At

i , limt→∞ Bti and limt→∞ St(τ
t) all exist uniquely, and thus τ ∗ = limt→∞ τ t uniquely

exists.
In summary, there is a single perfect Bayesian equilibrium for PCPA. �
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