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ABSTRACT
This paper introduces a new kind of seasonal fractional autoregres-
sive process (SFAR) driven by fractional Gaussian noise (fGn). The new
model includes a standard seasonal AR model and fGn. The estimation
of the parameters of this new model has to solve two problems: non-
stationarity from the seasonal structure and longmemory from fGn.We
innovatively solve these by getting a stationary subsequence, making
a stationary additive sequence and then obtaining their spectral den-
sity. Then we use one-step procedure for Generalized Least Squares
Estimator (GLSE) and the Geweke Porter–Hudak (GPH) method to get
better results. We prove that both the initial and one-step estimators
are consistent and asymptotically normal. Finally, we use Monte Carlo
simulations with finite-sized samples to demonstrate the performance
of these estimators. Moreover, through empirical analysis, it is shown
that the SFAR model can simulate some real-world phenomena better
than general models.
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1. Introduction

The long memory phenomenon and seasonal phenomenon play important roles in eco-
nomics, geography and other fields. One classic type of seasonal model with long memory is
the ARFISMA(p, d, q) × (P,D,Q)s process, which has been extensively researched by Hosk-
ing (1984), Franco and Reisen (2007) and Chan and Terrin (1995). As demonstrated below,
these models are equivalent to the ARUMAmodel, which can be expressed as

G(B)Xn = εn, (1)

where B is the lag operator, εn is a short memory process and G(·) satisfies the recurrence
relation

G(z) = (1 − z)d0

⎧⎨⎩
r−1∏
j=1

(1 − 2z cos λj + z2)dj

⎫⎬⎭ (1 + z)dr , (2)

where |dj| ≤ 1
2 , and for j = 0, 1, 2, . . . , r, denoting that r is a positive integer, the frequencies

satisfy 0 ≤ λj ≤ π. Additionally, λ0 = 0 and λr = π.
In the present paper, we conduct a comprehensive study on a p-order seasonal fractional
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autoregressive process (SFAR), denoted as XnT+u. Here, the nonnegative integer T signifies
the number of seasons, suggesting that the time series data exhibits seasonal fluctuations with
a period of T. For example, when T = 4, it represents a quarterly seasonal pattern, and when
T = 12, it corresponds to a monthly seasonal pattern. For any n ∈ N (where n denotes the
count of complete seasonal cycles), the model adheres to the following recursive relation:

XnT+u =
p∑

i=1
φi(nT + u)X(n−i)T+u + εHnT+u, u = 1, 2, . . . ,T, (3)

where u denotes the specific time points within each seasonal cycle, thus taking values from
1 to T, and p represents the order of the autoregressive part of the model. The φi(nT + u) are
autoregressive seasonal coefficients, which may change with time and satisfy φi(u) = φi(u +
T). εHnT+u represents fractional Gaussian noise, which explains the nonseasonal fluctuations.
Fractional Gaussian noise exhibits long memory when 1

2 < H < 1. The long memory phe-
nomenon indicates strong autocorrelation or dependence in time series data. We typically
say that Xt has long memory if its covariance satisfies

γj ∼ Qj2H−2, j → ∞, (4)

and the spectral density is defined by the scheme

f (λ) ∼ Vλ1−2H , λ → 0+, (5)

where 1
2 < H < 1, Q and V are constants greater than 0. Robinson (2010), Bisognin

and Lopes (2009) and Beran et al. (2013) did a great deal of detailed and excellent work in
fractional Gaussian noise (fGn), especially in the estimation ofH.

The Seasonal Fractional Autoregressive (SFAR) model represents a natural expansion of
the fractional autoregressive process (FAR). The FAR recognized as a long memory model is
formulated as

Xn =
p∑

i=1
aiXn−i + εHn , n ∈ N, (6)

where ai ∈ R. It is composed of fractional Gaussian noise, and its long-range dependence
characteristics are determined by the value of H.

In this paper, we focus on the estimation and asymptotic properties of parameters in the
SFARmodel. Geweke and Porter-Hudak (1983) and Carlin and Dempster (1989) conducted
some research on such models in the early stage. We aim to extend related research and will
use a one-step procedure to optimize our approach.

For the parameter estimation of SFAR model, two key problems need to be addressed:
the nonstationarity resulting from the seasonal structure and the dependence within the
fractional Gaussian noise.

Seasonality is a distinctive feature of time series data where patterns repeat at regular
intervals, typically defined by a specific period T. Seasonal time series models are often
nonstationary, which present certain challenges for our research. A common solution is to
perform seasonal differencing on the time series. Seasonal autoregressive process is a classi-
cal model proposed by Harrison (1965) and Chatfield and Prothero (1973). Tsay (2013) has
explored SARmodel with white noise in detail. However, there still remain many interesting
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variationsworthy of research. For instance, the study inKong andLund (2023) employed par-
ticle filtering likelihood methods to estimate seasonal count time series. The other category
is the research on the SAR model driven by fGn.

Previous studies by Brouste et al. (2014) and Soltane (2024) have laid a foundation for the
estimation of the parameters φi(u) in FAR models. In this paper, we use the modified Gen-
eralized Least Squares Estimation (GLSE) proposed by Esstafa (2019) and Hariz et al. (2024)
to obtain a consistent estimator of φi(u). Additionally, we will prove that this estimator is
asymptotically normal.

Time series models with long memory show long-range dependencies between distant
observations, posing challenges to traditional statistical analysis and forecasting. In the SFAR
model, long memory comes from fractional Gaussian noise, where the parameter H deter-
mines this characteristic. Thus estimatingH is crucial. The first method for estimatingH was
the rescaled range analysis by Hurst (1951), but its lack of a limiting distribution complicates
statistical inference. Now, popular estimation techniques are the GPH estimation by Geweke
and Porter-Hudak (1983) and the local Whittle estimation by Robinson (1995).

For the estimation of the Hurst indexH, we will adopt the Geweke Porter–Hudak (GPH)
method, which exhibits a smaller bias, for an additive stationary time series derived from
the samples. It is worth noting that it would be more straightforward to estimate Ĥn(u) by
(XnT+u)n∈N. However, this approach is not fundamentally different from themethod inHariz
et al. (2024) and each Ĥn(u) cannot contain information about all the data. Meanwhile, con-
sidering that sequence (XnT+u)n∈N,u=1,...,T represents data of the same nature, we assume that
the long memory parameter is the same for each season and is independent of the season u,
and the differences between different seasons are only determined by the seasonal param-
eters. To obtain a unique Ĥn, we sum up the data in each cycle to obtain a new sequence
(Yn)n∈N, and then we prove the stationarity of (Yn)n∈N, calculate its spectral density and
finally use the GPH method to get Ĥn(u). This improvement enables us to address the issue
of parameter estimation for H in nonstationary time series with seasonality.

After obtaining the initial estimators ofφi(u) andH, wemodify our approach using a faster
and asymptotically efficient method known as the one-step estimator. This method, first pro-
posed by Le Cam (1956), has been widely applied in ergodic Markov chains (Kutoyants
& Motrunich, 2016), diffusion processes (Gloter & Yoshida, 2021) and fractional autore-
gressive processes (Hariz et al., 2024). The primary challenge lies in calculating the Fisher
information matrix, as discussed in Cohen et al. (2013). To tackle this issue, we extract the
data from each season to form a new series, proving the stationarity of this new series and
deriving its spectral density. Subsequently, we can utilize the results from Cohen et al. (2013)
and Hariz et al. (2024) to obtain related findings.

This paper is organized as follows. Sections 2 and 3 present the main results. Section 2
introduces the initial estimator of the Hurst index φi(u) and discusses its asymptotic proper-
ties. Section 3 derives the one-step estimator and its asymptotic properties. Section 4 provides
numerical illustrations to demonstrate the performance of both the initial and one-step esti-
mators. Section 5 concludes this paper and considers the prospects and significance of our
research. Section 6 illustrates that the SFAR model is superior to the traditional seasonal
autoregressive model through a practical application. All technical proofs are gathered in
Section 7, while Section 8 presents auxiliary results.
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2. Initial estimator of SFAR(1) models

2.1. Problem statements and assumptions

Without loss of generality, based on the representation of the SFAR model in (3), we can
consider the first-order model in this paper and denote φ1(u) = φ(u).

XnT+u is said to be an SFAR(1) model if it admits the representation

XnT+u = φ(nT + u)X(n−1)T+u + εHnT+u, u = 1, 2, 3, . . . ,T, n ∈ N, (7)

where φ(u) = φ(u + nT), T represents the season length and u denotes the uth season of the
nth cycle. The term εHnT+u represents a stationary fractionalGaussian noisewith aHurst index
H. It is defined as the increment of the fractional Brownian motion, specifically εHnT+u =
BHnT+u+1 − BHnT+u, where B

H
nT+u is the fractional Brownian motion. The autocovariance of

sequence (εHn )n∈N takes the form of

ρ(k) = 1
2
(|k + 1|2H − 2|k|2H + |k − 1|2H) , (8)

the spectral density of (εHn )n∈N defined by

fεHn (λ) = CH(1 − cos(λ))
∑
j∈Z

1
|λ + 2jπ|2H+1 , (9)

where CH = 1
2π�(2H + 1) sin(πH) and λ ∈ [−π,π], �(·) is Gamma function.

Here are some assumptions and notations below.
A0: Denote �l	

u as a compact set with the following expression:

�l	
u = {φ(u) ∈ R : the roots of 1 − φ(u)z = 0 have modulus ≥ 1 + l} .

We define the set �l
u as the Cartesian product �l	

u × [d1, d2], where l is a positive constant
and [d1, d2] ∈ (0, 1).

A1: φ(u) ∈ (−1, 1) and H ∈ (0, 1).

Notation: By L−→ and P−→, respectively, we denote convergence in law and convergence
in probability. Let φ = (φ(1),φ(2), . . . ,φ(T)). Denote the parameters θ(u) = (φ(u),H),
where θ(u) ∈ �l

u, and �l
u represents the interior of �l

u.

Define the parameter space �l = �l	
1 × �l	

2 × · · · × �l	
T × [d1, d2], which encompasses

all the required parameters. Given samples of size n, we obtain the estimators θ̂n =
(φ̂n(1), φ̂n(2), . . . , φ̂n(T), Ĥn) and θ̂n(u) = (φ̂n(u), Ĥn).

In this paper, we will present both the initial estimator and the one-step estimator for
the parameters of the SFAR(1) model. The following sections will delve into the asymptotic
properties and characteristics of these estimators in detail.

2.2. The GPH estimator for the hurst index

Due to the nonstationarity ofXn, obtaining an estimator forH using standard semiparametric
methods is not feasible. To address this, we can extract stationarity from the data by splitting



STATISTICAL THEORY AND RELATED FIELDS 5

the time series (Xn)n∈N into seasonal components, resulting in T stationary subsequences
X(u) = (Xu,XT+u, . . . ,XnT+u) and we construct a stationary additive series defined as Yn =∑T

u=1 XnT+u.
In this section, we will estimate H using the log-periodogram method, specifically the

GPH estimator, applied to the additive series(Yn)n∈N. The spectral density and stationarity
properties of (Yn)n∈N and (XnT+u)u∈Z are outlined in the following three propositions.

Proposition 2.1: For each u = 1, 2, . . . ,T and any n ∈ N, under conditions A0 and A1, the
processes

Yn =
T∑

u=1
XnT+u, a.s.,

XnT+u =
∞∑
j=0

φj(u)εH(n−j)T+u, a.s., (10)

are stationary.

According to the above formula andTheorem4.4.1 in Brockwell andDavis (1991), we deduce
the spectral density ofYn from the spectral density of εHt . The proof will be presented in detail
in Section 6.

Remark 2.1: The stationary process (Yn) encompasses all the information of εHn . Therefore,
we will utilize (Yn) to obtain the estimation of H and the one-step estimator.

Proposition 2.2: Let fH,φ(u)(λ) be the spectral density of (XnT+u)n∈N. Then it can be rewritten
as

fH,φ(u)(λ) = (1 − 2φ(u) cos λT + φ2(u)
)−1 fεHn (λ).

Proposition 2.3: Let gH,φ(λ) be the spectral density of (Yn)n∈N. Then it can be rewritten as

gH,φ(λ) =
∣∣∣∣∣∣
T−1∑
p=0

�φ(T−p)(λ)

∣∣∣∣∣∣
2

fεHn (λ), (11)

where �φ(T−p)(λ) = e−ipλ

1−φ(T−p)e−iλT , p = 0, 1, . . . ,T − 1.

Because the GPH estimator is a type of semi-parametric estimation as discussed in Geweke
and Porter-Hudak (1983), the explicit expression of |∑T−1

p=0 �φ(T−p)(λ)|2 does not affect the
estimation ofH. Thus the equation Ĥn = d̂n + 1

2 remains valid. We can then apply the GPH
method directly to the stationary process Yn.

Let new series (Yn)n∈N be an observation sample generated via Equation (10) and choose
a suitable integer m which can decrease the mean square error of estimation, where m<n.
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We get the periodogram of Yn given by

I(λ) = 1
2πn

∣∣∣∣∣
n∑

t=0
Yt exp(itλ)

∣∣∣∣∣
2

, λj = 2πj
n

, j∈ {1, 2, . . . ,m} ,

aj = log
(
2 sin

λj

2

)
, am = 1

m

m∑
j=1

aj, Sm =
m∑
j=1

(aj − am)2.

We estimate d by regressing log I(λj) with respect to aj, such that

d̂n = − 1
2Sm

m∑
j=1

(aj − am) log I(λj).

The estimator Ĥn is defined by

Ĥn = d̂n + 1
2
. (12)

Remark 2.2: There are several semi-parametric methods for estimating the long mem-
ory parameters d and H, such as whittle estimation and R/S estimation method proposed
by Robinson (1995) and Marinucci and Robinson (2001). These models rely on the log-
periodogram approach. However, these methods tend to exhibit greater bias compared to
the GPH estimator.

2.3. Generalized least squares estimation of SFAR(1)models

We now focus on estimating φ(u) given that the parameter H has been estimated. When
the noise in the seasonal autoregressive model is white noise, we can easily obtain the esti-
mator of the parameters of these models using Least Squares Estimation (LSE). However,
when the noise is fractional Gaussian noise (fGn), the covariance matrix of fGn is no longer
diagonal, making LSE inappropriate. Therefore, we consider usingGeneralized Least Squares
Estimation (GLSE).

To address the effect of seasonal structure on parameter estimation, we apply GLSE to the
subsequences (Xu,XT+u, . . . ,XnT+u), where u = 1, 2, . . . ,T. This allows us to estimate the
parameters φ(1),φ(2), . . . ,φ(T) sequentially, assuming the Hurst index is known.

We deduce the time series can be written in the form

�
j
i(u) = (Xu+iT ,Xu+(i+1)T , . . . ,Xu+jT)∗, i ≤ j,

and the autocovariance matrix is given by

�nT,u(H) = ρ(|i − j|T)1≤i,j≤n =

⎛⎜⎜⎜⎝
γ0,u γT,u γ2T,u · · · γ(n−1)T,u
γT,u γ0,u γ3T,u · · · γ(n−2)T,u
...

...
...

. . .
...

γ(n−1)T,u γ(n−2)T,u γ(n−3)T,u · · · γ0,u

⎞⎟⎟⎟⎠ ,

where γnT,u = Cov(XnT+u,Xu), n ∈ N. We can easily show that �nT,u(H) depends only on n
and not on u. Hence, we will denote�nT,u simply as�nT from now on, without distinguishing
between them.
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The estimators {φ̂n(u)}u≥0 are defined by

φ̂n(u) = �n
2(u)

∗�−1
(n−1)T(Ĥn)�

n−1
1 (u)

�n−1
1 (u)∗�−1

(n−1)T(Ĥn)�
n−1
1 (u)

. (13)

Now, due to the seasonal structure, we need to examine whether the elements of �−1
nT (Ĥn)

are finite to assess the feasibility of this method.
Thanks to Fox and Taqqu (1986) and Esstafa (2019), we know that the elements of

�−1
nT (Ĥn) can be expressed as a function of the spectral density of fGn. The spectral

representation of (�−1
nT )j,k implies that

(�−1
nT )j,k = 1

(2π)2

∫ π

−π

1
fεHn (λ)

ei(k−j)Tλ dλ.

As λ → 0, according to the definition of fractional Gaussian noise, we have

fεHn (λ) ∼ CH

2
|λ|1−2H ,

whereCH is a constant.We can categorize the elements of thematrix into two types: diagonal
elements and off-diagonal elements.

When j = k, we have

(�−1
nT )j,j = 1

(2π)2

∫ π

−π

1
fεHn (λ)

dλ = 1
2π2

∫ π

0

1
fεHn (λ)

dλ. (14)

One has when λ → 0 that

1
fεHn (λ)

= 2
CH

|λ|2H−1 + o
(

2
CH

|λ|2H−1
)
.

This implies that for l>0 there exists δl > 0 such that for any λ ∈ (−δl, δl), we have

(1 − l)
2
CH

|λ|2H−1 ≤ 1
fεHn (λ)

≤ (1 + l)
2
CH

|λ|2H−1. (15)

Thus Equation (14) has an upper bound when λ ∈ (−δl, δl):

|(�−1
nT )j,j| ≤ 1 + l

CHπ2

∫ δl

0
λ2H−1 dλ + 1

2π2

∫ π

δl

1
fεHn (λ)

dλ

≤ δ2Hl (1 + l)
2HCHπ2 + π − δl

2π2 sup
λ∈(δl ,π]

1
fεHn (λ)

≤ K1,

where K1 is a constant.
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When j 	= k, according to Esstafa (2019), there exists a positive constant K2 such that for
any j, k = 1, 2, . . .,

|(�−1
nT )j,k| ≤ K2

∣∣∣∣ 1
(k − j)T

∣∣∣∣2H .

Therefore, we have shown that the elements of �−1
(n−1)T(Ĥn) are finite, which implies that

φ̂n(u) is bounded. From these points, we use the notationsH,φ(u) and estimator Ĥn(u),φ̂n(u)
to present our results concerning the asymptotic properties of the initial estimator.

Theorem2.4: Lettingm = [nδ] for some 0 < δ < 1, (XnT+u)n≥0 satisfies Equation (7). Under
conditions A0 and A1, we have (

Ĥn

φ̂n(u)

)
P−−−→

n→∞

(
H

φ(u)

)
,

for every u = 1, 2, . . . ,T, as n → ∞, where Ĥn and φ̂n(u) are initial estimators defined in
Equations (12) and (13). [·] denotes the integer part function.

Remark 2.3: In this proof, we demonstrate that the estimators for each pair of parameters
are individually consistent. Consequently, it follows that the estimators for all parameters
together are also consistent.

Theorem2.5: Letm = [nδ] for some 1
2 < δ < 2

3 . Under conditions A0 andA1, θ̂n has a (T+1)
dimension limiting normal distribution given by

√
m

⎛⎜⎜⎜⎝
Ĥn − H

φ̂n(1) − φ(1)
...

φ̂n(T) − φ(T)

⎞⎟⎟⎟⎠ L−−−→
n→∞ N (0,
θ),

where θ̂n = (Ĥn, φ̂n(1), φ̂n(2), . . . , φ̂n(T)). The covariance matrix 
θ is of the form 
θ =
VH
̃θ , VH is the asymptotic variance of

√
m(Ĥn − H), and 
̃θ is a built-in singular matrix.

Remark 2.4: Hariz et al. (2024) presented 1
2 < δ < 2

3 , andHurvich et al. (1998) stated that if
m = nδ , where 0 < δ < 1, it can ensure the asymptotic normality of Ĥn. The condition 1

2 < δ

is to ensure that φ̂n(1) and φ̂n(2) are asymptotically normal. But according to Kutoyants
and Motrunich (2016), if 2

3 < δ, a multi-step estimator may be required, which contradicts
our consideration of a one-step estimator. Thus we consider restricting δ to the interval( 1
2 ,

2
3
)
.

Remark 2.5: These results can be extended to the SFAR(p), provided that X(u) is stationary.

Remark 2.6: Additionally, the estimation of φ can be also approached using methods from
Brouste et al. (2014) and Soltane (2024).
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3. One-step estimator of SFAR(1) models

In this section, we explore modifications to the initial estimator θ̂n to develop a one-step
estimator θ̃n.

We assume that Yn is stationary with a spectral density gH,φ(λ), as obtained in
Equation (11). And gH,φ(λ) satisfies the necessary regularity conditions as follows.

Condition 1: For any θ = (θj1 , θj2 , . . . , θjT+1) ∈ �l, where �l is an open subset of RT+1,
gH,φ(λ) is three times continuously differentiable on �l. In addition, for any 0 ≤ k ≤ 3 and
j1, . . . , jT+1, the partial derivative

∂k

∂θj1 . . . ∂θjk
gH,φ(λ)

is a continuous equation on �l × [−π,π]\{0}, is continuously differentiable with respect to
λ and its partial derivative

∂k+1

∂λ∂θj1 . . . ∂θjk
gH,φ(λ),

and is continuous on �l × [−π,π]\{0}.
Condition 2: There also exists a continuous function α: �l −→ (−1, 1), such that for any
compact set �l	 ⊂ �l and δ > 0, the following conditions hold for every (θ , λ) ∈ �	 ×
[−π,π]\{0}:

c1,δ,�l	 |λ|−α(θ)+δ ≤ gH,φ(λ) ≤ c2,δ,�l	 |λ|−α(θ)−δ

and ∣∣∣∣ ∂

∂λ
gH,φ(λ)

∣∣∣∣ ≤ c2,δ,�l	 |λ|−α(θ)−1−δ ,

for any k ∈ {1, 2, 3} and any j ∈ (1, . . . ,T + 1)k, where∣∣∣∣∣ ∂k

∂θj1 . . . ∂θjk
gH,φ(λ)

∣∣∣∣∣ ≤ c2,δ,�l	 |λ|−α(θ)−δ .

Here, c1,δ,�l	 and c2,δ,�l	 are some positive finite constants which only depend upon δ and
�l	 . We will prove the spectral density of Yn satisfies regular condition in auxiliary results.

Proposition 3.1: Let ln be the log-likelihood function of a stationary process (Yn)n∈N. Assume
that gH,φ(λ) satisfies the regularity conditions and let B(θ ,R) (open ball of centre θ and radius
R) for some R>0. Then, for any t ∈ B(θ ,R), u ∈ N,

ln
(

θ + t√
n

)
− ln(θ) = t

∇ln(θ)√
n

− tI(θ)t∗

2
+ rn,θ (t).

When n → ∞, the score function ∇(·) satisfies
∇ln(θ)√

n
P−−−→

n→∞ N (0,I(θ))
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and

rn,θ (t)
a.s.−−−→

n→∞ 0,

uniformly on each compact set. The Fisher information matrix is given in our case by

I(θ) = 1
4π

(∫ π

−π

∂ log gH,φ(λ)

∂θk

∂ log gH,φ(λ)

∂θj
dλ

)
1≤k,j≤T+1

. (16)

This result is a direct consequence of Theorem from Cohen et al. (2013).
Since gH,φ(λ) satisfies the regularity conditions, the elements of the Fisher informa-

tion matrix I(θ) are finite. After obtaining the Fisher information matrix I(θ) and the
log-likelihood function of (Yn)n∈N, we can compute the one-step estimator as follows:

θ̃n = θ̂n + I(θ̂n)
−1 1

n
∇ln(θ̂n). (17)

We can now analyse the asymptotic properties of the one-step estimator.

Theorem 3.2: Let θ̂n be the initial estimator of θ and θ̃n be the one-step estimator of θ . When
gH,φ(λ) satisfies the regular conditions, we have a asymptotic normal distribution of θ̃n that

√
n(θ̃n − θ)

P−−−→
n→∞ N (0,I(θ)−1).

Remark 3.1: The parameter θ should not lie on the boundary of the parameter space �l.

Remark 3.2: The one-step estimator can be appliedmore generally even if the initial estima-
tor θ̂n does not satisfy asymptotic normality. According to Proposition 2.3 in Hariz (2025), if
the initial estimator with convergence speed is lower than

√
n and the spectral density of time

seriesmeets the regular condition, then the one-step estimator θ̃n can still achieve asymptotic
normality.

Remark 3.3: One-step estimator can achieve Hájek’s lower bound, and thus it is asymp-
totically efficient in the local minimax sense. We can find related conclusions in Brouste
et al. (2020) and Cohen et al. (2013).

4. Simulation study

According to Equation (10), the likelihood function based on the sample Y(n) =
(Y0,Y1, . . . ,Yn−1) is given by

ln(θ) = −1
2
log det

(
�Y
n (θ)

)− 1
2
Y(n)∗�Y

n (θ)Y(n),

where �Y
n (θ) is the covariance matrix of Y(n). For any K ∈ N,

Cov(Y0,Yk) =
∫ π

−π

exp(ikλ) gH,φ(λ) dλ,

where Cov(·, ·) denotes the covariance. The score function with respect to θ is given by
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Figure 1. The simulation of initial estimator and one-step estimator where θ = (0.6, 0.2, 0.8) for m =
[n3/5], n = 100.

∂ ln(θ)

∂θi
= −1

2
tr
((

�Y
n (θ)

)−1 ∂�Y
n (θ)

∂θi

)
+ 1

2
Y(n)∗ (�Y

n (θ)
)−1 ∂�Y

n (θ)

∂θi

(
�Y
n (θ)

)−1 Y(n),

where tr(·) denotes the trace of a matrix. The Fisher information matrix (FIM) can be
deduced from Equation (16). We simulate the spectral density and its derivatives using the
method described in Hariz et al. (2024), and then plug the FIM and score functions into
Equation (17) to compute the one-step estimator numerically.
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Figure 2. The simulation of initial estimator and one-step estimator where θ = (0.6, 0.2, 0.8) for m =
[n3/5],n = 1000.

For each set of parameters, specifically (φ(1),φ(2),H) = (0.6, 0.2, 0.8) and (φ(1),φ(2),H) =
(0.2, 0.8, 0.6), we conductM = 1000 Monte Carlo simulations. The sample sizes considered
are n = 100, n = 1000 and n = 2000. The number of Fourier frequencies for the initial esti-
mations is set as m = [n0.6] and remains fixed throughout the simulations. Without loss of
generality, we assume T = 2, and the spectral density of Yn in this case is given by

gH,φ(1),φ(2)(λ) = 2 + φ2(1) + φ2(2) + A cos λ − B cos 2λ − C cos 3λ(
1 − 2φ(2) cos 2λ + φ2(2)

) (
1 − 2φ(1) cos 2λ + φ2(1)

) fεHn (λ), (18)
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Figure 3. The simulation of initial estimator and one-step estimator where θ = (0.6, 0.2, 0.8) for m =
[n3/5],n = 2000.

where A = 2 + 2φ(1)φ(2) − 2φ(1), B = 2(φ(1) + φ(2)) and C = 2φ(2).
Figures 1, 2 and 3 depict the frequency distribution of statistical errors for the initial esti-

mator and one-step estimator of the SFAR(1) model with parameters φ(1) = 0.6, φ(2) = 0.2
and H = 0.8. Figures 4, 5 and 6 depict the frequency distribution of statistical errors for the
initial estimator and one-step estimator of the SFAR(1) model with parameters φ(1) = 0.2,
φ(2) = 0.8 and H = 0.6.

In all the tables (Tables 1–6), B stands for Bias, IE represents initial estimator and OS
denotes one-step estimator. From the above tables, it can be seen that the OS estimator shows
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Figure 4. The simulation of initial estimator and one-step estimator where θ = (0.2, 0.8, 0.6) for m =
[n

3
5 ], n = 100.

a significant improvement in the estimation of H. From these figures and the accompanying
tables, it is evident that the one-step estimator outperforms the initial estimation, with a par-
ticularly notable improvement in estimating the parameter H. At the same time, we found
that as the sample size increases, the estimation becomes more efficient. According to Hariz
et al. (2024) and our simulations, the one-step estimation also has a faster running speed.
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Figure 5. The simulation of initial estimator and one-step estimator where θ = (0.2, 0.8, 0.6) for m =
[n

3
5 ],n = 1000.

5. Conclusion and perspectives

In this paper, we propose a simple and effective method for estimating the parameters of
the SFAR model individually, and we derive the asymptotic properties of this method. We
address the difficulty of parameter estimation caused by the non-stationarity of the model by
creating new subseries and obtaining an explicit form for the spectral density of the additive
series.
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Figure 6. The simulation of initial estimator and one-step estimator where θ = (0.2, 0.8, 0.6) for m =
[n

3
5 ],n = 2000.

The one-step procedure is essentially a gradient descent approach, achieving the
√
n rate

with optimal variance.
Our results can be extended to SARIMAmodels by adjusting the calculation of the covari-

ance matrix of the noise and the spectral density of Xn. Additionally, more effective initial
estimators can be utilized for the one-step procedure, similar to the approach taken by Hariz
et al. (2024) in the estimation of FARIMA models.



STATISTICAL THEORY AND RELATED FIELDS 17

Table 1. The bias and RMSE of initial estimator and one-step
estimator for θ = (0.6, 0.2, 0.8)when n = 100.

n = 100 B IE B OS RMSE IE RMSE OS

H 0.1462 0.0683 0.2656 0.1106
φ(1) −0.0143 0.0064 0.0807 0.0237
φ(2) −0.0082 −0.0055 0.0972 0.0234

Table 2. The bias and RMSE of initial estimator and one-step
estimator for θ = (0.6, 0.2, 0.8)when n = 1000.

n = 1000 B IE B OS RMSE IE RMSE OS

H −0.0599 0.0471 0.1101 0.0660
φ(1) −0.0015 −0.0002 0.0248 0.0212
φ(2) −0.0010 −0.0081 0.0304 0.0218

Table 3. The bias and RMSE of initial estimator and one-step
estimator for θ = (0.6, 0.2, 0.8)when n = 2000.

n = 2000 B IE B OS RMSE IE RMSE OS

H −0.0497 0.0112 0.0864 0.0545
φ(1) −0.0004 0.0001 0.0180 0.0212
φ(2) 0.0005 0.0003 0.0210 0.0186

Table 4. The bias and RMSE of initial estimator and one-step
estimator for θ = (0.2, 0.8, 0.6)when n = 100.

n = 100 B IE B OS RMSE IE RMSE OS

H 0.3597 0.1846 0.4227 0.2036
φ(1) −0.0009 0.0010 0.0962 0.0530
φ(2) −0.0140 0.0028 0.0651 0.0471

Table 5. The bias and RMSE of initial estimator and one-step
estimator for θ = (0.2, 0.8, 0.6)when n = 1000.

n = 1000 B IE B OS RMSE IE RMSE OS

H 0.1351 0.0312 0.1644 0.0736
φ(1) −0.0014 −0.0009 0.0309 0.0088
φ(2) −0.0019 0.0014 0.0193 0.0104

An interesting aspect to consider is that whenT is sufficiently large, even larger than n, but
still finite, the effectiveness of this gradient descent approach may diminish. In such cases,
alternative methods for optimizing the initial estimator should be explored.

Table 6. The bias and RMSE of initial estimator and one-step
estimator for θ = (0.2, 0.8, 0.6)when n = 2000.

n = 2000 B IE B OS RMSE IE RMSE OS

H 0.0883 0.0274 0.1146 0.0735
φ(1) 0.0011 0.0006 0.0305 0.0245
φ(2) −0.0032 0.0003 0.0186 0.0135
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Figure 7. Autocorrelation and partial autocorrelation coefficient plots of the Colorado River runoff in
Arizona.

6. Application on real data

In this section, we will conduct practical modelling and analysis to examine the application
effectiveness of the seasonal autoregressive model driven by fractional Gaussian noise in real
data.

The data on the Colorado River runoff in Arizona selected in this paper are from the pub-
lic data of the United States Geological Survey. This dataset records the monthly river runoff
of the Colorado River from 1922 to 2022, with the unit of cubic feet per second. To facili-
tate modelling, we average the data of each of the 12 months on a quarterly basis, obtaining
the quarterly runoff data for the first, second, third and fourth quarters respectively. First,
we calculate and obtain the autocorrelation function (ACF) plot and partial autocorrelation
function (PACF) plot of the quarterly runoff data as follows.

From Figure 7, we can observe that the autocorrelation function shows a trailing pattern
with a slow decay rate, while the partial autocorrelation function cuts off. Therefore, it is
appropriate to consider using a fractional AR model with long memory properties.

To avoid data over crowding and considering that the river runoff around 1963 changed
significantly for unknown reasons, we extract the runoff data from 1922 to 1962 and draw
the following sample path plot.

As can be seen from Figure 8, the runoff of this river exhibits obvious seasonality. Con-
sidering the above two points, in this empirical analysis, we consider using the SFAR(1)
model to simulate the above observations and compare it with the simulation of the seasonal
autoregressive model driven by white noise.

The seasonal autoregressive model driven by white noise is as follows:

X4n+u = α(4n + u)X4(n−1)+u + ε4n+u, u = 1, 2, 3, 4, n ∈ Z
+, (19)

where ε4n+u is white noise, and α(1), α(2), α(3), α(4) are the model coefficients, satisfying
α(4n + u) = α(u).
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Figure 8. Sample path plot of the Colorado River runoff in Arizona from 1922 to 1962.

Figure 9. Model fitting plot.

Table 7. Fitting results of different models.

Model SFAR SAR

Parameters (φ(1), φ(2), φ(3), φ(4), H) (α(1), α(2), α(3), α(4))
Values (0.96, 0.82, 0.80, 0.90, 0.60) (0.80, 0.61, 0.16, 0.53)
RMSE 9439.37 16773.58
MAE 6107.16 12264.90

We utilized the data from 1922 to 1962 to derive the parameter estimations of the two
models. Subsequently, we computed their RMSEb andMAE against the real data. Finally, we
randomly simulated 20 data points within these 40 years using these twomodels. The results
are shown in the following table and figure.

In the following figure, the values represent the parameters fitted by the SFAR and SAR
models. From Figure 9 and Table 7, we can see that the seasonal autoregressive model driven
by fractional noise has smaller RMSE andMAE values and better fitting performance. There-
fore, the seasonal autoregressive model with long memory properties is more suitable for the
study of the Colorado River runoff.
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Appendices

Appendix 1. Proofs of themain results

For clarity, we divide the technical results into two parts. The first part addresses the stationarity and
spectral density of the SFAR(1) model, as well as the asymptotic properties of the initial estimator. The
second part focuses on the asymptotic properties related to the one-step estimator.

A.1. Proof of Proposition 2.1

We will utilize the following lemma to demonstrate the stationarity of Yn.

Lemma A.1: For any u ∈ N, the SFAR(1)model is defined by the recursive scheme

XnT+u = φ(u)X(n−1)T+u + εHnT+u, (A1)

where εHnT+u is a fractional Gaussian noise, φ(u) = φ(u + nT) ≤ 1, n ∈ N, and then (XnT+u)n∈N is a
stationary process.

Proof: We verify that the process satisfies the three conditions for weak stationarity individually.
(1) For any u ∈ N, E(XnT+u) = μ is a finite constant.

Because the equation (1 − φ(u))z = 0 has a root outside the unit circle, the process (XnT+u)n∈N is
said to be an SFAR(1) process if it can be represented as follows:

XnT+u =
∞∑
j=0

φj(u)εH(n−j)T+u. (A2)

Without loss of generality, we assume E(εHn ) = 0. For any time series (XnT+u)n∈N under themonotone
convergence theorem and the Cauchy-Schwarz inequality, we obtain

E|XnT+u| ≤ E
∞∑
j=0

∣∣∣φj(u)εH(n−j)T+u

∣∣∣ = ∞∑
j=0

E|φj(u)εH(n−j)T+u|

≤
∞∑
j=0

∣∣∣φj(u)|E|εH(n−j)T+u

∣∣∣
≤ C

∞∑
j=0

|φj(u)|. (A3)

We know that φj(u) = o(ρ−j) as j → ∞ for 1 < ρ < 1
φ(u) . Consequently, φj(u) is absolutely

summable, i.e.,
∑∞

j=0 |φj(u)| < ∞. Thus E|XnT+u| < ∞ as shown in Equation (A3). By the monotone
convergence theorem,

∑∞
j=0 φj(u) is absolutely convergent almost surely.

https://doi.org/10.1017/S0266466611000399
https://doi.org/10.1016/S0304-4076(01)00076-8
https://doi.org/10.1214/aos/1176324636
https://doi.org/10.1080/15326349.2023.2202227
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Considering that ∣∣∣∣∣∣
k∑

j=0
φj(u)εH(n−j)T+u

∣∣∣∣∣∣ ≤
k∑

j=0

∣∣∣φj(u)εH(n−j)T+u

∣∣∣
with the dominated convergence theorem,

E(XnT+u) = lim
k→∞

E

⎛⎝ k∑
j=0

φj(u)εH(n−j)T+u

⎞⎠ = 0.

(2) For any u ∈ N, E(XnT+u)
2 ≤ ∞.

From Equation (A2), we derive

E(XnT+u)
2 = E

⎛⎝ ∞∑
j=0

φj(u)εH(n−j)T+u

⎞⎠2

= E

( ∞∑
s=0

∞∑
k=0

φs(u)φk(u)εH(n−s)T+uε
H
(n−k)T+u

)
. (A4)

By applying the conclusion above, we obtain

E |XnT+u|2 =
∞∑
s=0

∞∑
k=0

|φs(u)φk(u)|E
∣∣∣εH(n−s)T+uε

H
(n−k)T+u

∣∣∣ ,
and the covariance of εH(n−s)T+u and εH(n−k)T+u is

ρ
(
εH(n−s)T+u, ε

H
(n−k)T+u

)
= 1

2
(|(s − k) + 1|2H − 2|(s − k)T|2H + |(s − k)T − 1|2H) .

Since φj(u) is absolutely summable, it is also square summable. Additionally, as s − k → ∞,
ρ(εH(n−s)T+u, ε

H
(n−k)T+u) → 0, implying that there exists a constantM such thatE|εH(n−s)T+uε

H
(n−k)T+u| ≤

M. Based on the above discussion and Equation (A4), we have established that E(XnT+u)
2 ≤ ∞.

(3) For any k, s ∈ N, E(XkT+u − μ)E(XsT+u − μ) = γ(k−s)T , which means that the autocovariance
of XkT+u and XsT+u depends only on the time interval (k − s)T.

Without loss of generality, we assume μ = 0 and the covariance of (XnT+u)n∈N is rewritten as

E(XkT+uXsT+u) = E

⎛⎝ ∞∑
i=0

∞∑
j=0

φi(u)φj(u)εH(s−i)T+uε
H
(k−j)T+u

⎞⎠
=

∞∑
i=0

∞∑
j=0

φi(u)φj(u)
1
2
(|(s − k + j − i)T + 1|2H

− 2|(s − k + j − i)T|2H + |(s − k + j − i)T − 1|2H).

Then for any q ∈ N, it follows directly from the above equation that

E(X(k+q)T+uX(s+q)T+u) = E(XkT+uXsT+u).

Thus we have shown that (XnT+u)n∈N is stationary. Since Yn is a combination of XnT+u in a cyclic
manner, its stationarity naturally follows. �
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A.2. Proof of Proposition 2.2

Since the stationarity of (XnT+u)n∈N has been established, we can determine its spectral density using
Theorem 4.4 (Brockwell & Davis, 1991). (XnT+u)n∈N satisfies the recursion

XnT+u = X(n−1)T+u + εHnT+u

=
∞∑
j=0

φj(u)εH(n−j)T+u

=
∑

j=0,T,2T,...

φ
j
T (u)εHnT+u−j.

From the above expression, we obtain the transfer function H(e−iλ) as follows:

H(e−iλ) =
∞∑
k=0

φk(u)e−iλkT .

Thus the spectral density function fH,φ(u)(λ) is given by

fH,φ(u)(λ) = |H(e−iλ)|2fεHn (λ) = fεHn (λ)

1 − 2φ(u) cos(λT) + φ2(u)
.

A.3. Proof of Proposition 2.3

Because the stationarity of (Yn)n∈N has been proved above, Yn has the following expression:

Yn =
T∑

u=1
XnT+u

=
∞∑
j=0

φj(1)εH(n−j)T+1 +
∞∑
j=0

φj(2)εH(n−j)T+2 + · · · +
∞∑
j=0

φj(T)εH(n−j)T+T

=
∞∑
k=0

h̃kεH(n+1)T−k,

and the coefficient of transfer function has the form of

h̃k =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

φ
k
T (T), if k = 0,T, 2T, . . . ,

φ
k−1
T (T − 1), if k = 1, 1 + T, 1 + 2T, . . . ,

...

φ
k−(T−1)

T (1), if k = T − 1, 2T − 1, 3T − 1, . . . .

Then the transfer function is given by

H(e−iλ) =
∞∑

j=kT

φ
j
T (T)e−ijλ +

∞∑
j=1+kT

φ
j−1
T (T − 1)e−ijλ + · · · +

∞∑
j=(k+1)T−1

φ
j−T+1

T (1)e−ijλ.

To simplify the notation, we denote

�φ(T−p)(λ) =
∞∑

j=kT+p

φ
j−p
T (T − p)e−ijλ = e−ipλ

1 − φ(T − p)e−iλT , p = 0, 1, . . . ,T − 1.
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Then we have

H(e−iλ) =
(T−1∑
P=0

�φ(T−p)(λ)

)
,

and the spectral density of (Yn)n∈N has the representation

gH,φ = |H(e−iλ)|2f HεHn (λ) =
∣∣∣∣∣
T−1∑
P=0

�φ(T−p)(λ)

∣∣∣∣∣
2

f HεHn (λ).

Remark A.1: | · | denotes the modulus of H(e−iλ).

A.4. Proof of Theorem 2.4

The first part of the proof is to establish the consistency of Ĥn, while the second part is to verify the
consistency of φ̂n(u).

(1) Consistency of Ĥn
This proof is based on Lemma 5.5 (Hariz et al., 2024) and the corollary (Hurvich et al., 1998). We

can express fH,φ(u) in the following form:

f̃H,φ(u)(λ) = (1 − cos λT)2dfH,φ(u)(λ)

= (1 − cos λT)2d(1 − 2φ(u) cos λT + φ2(u))−1fεHn (λ)

= CH(1 − cos λT)2d+1(1 − 2φ(u) cos λT + φ2(u))−1
∑
j∈Z

1
|λ + 2jπ|2H+1 .

According to Hurvich et al. (1998), it can be concluded that

d̂n − d = − 1
2Sm

m∑
j=1

(aj − am) log(f̃H,φ(u)) − 1
2Sm

m∑
j=1

(aj − am)εj,

where εj is the error defined in Equation (3) of Hurvich et al. (1998). According to Theorem 1 from
the aforementioned sources, we have

d̂n
P−−−→

n→∞ d.

Hence, it is evident that

Ĥn
P−−−→

n→∞ H.

(2) Consistency of φ̂n(u)
Assuming

�̃
j
i(u) =

(
εHu+iT , ε

H
u+(i+1)T , . . . , ε

H
u+jT

)
, i ≤ j,

we can derive the following expression:

φ̂n(u) − φ(u) = �̃n∗
2 (u)�−1

(n−1)T(Ĥn)�
n−1
1 (u)

�n−1∗
1 (u)�−1

(n−1)T(Ĥn)�
n−1
1 (u)

. (A5)

We apply the Taylor expansion of the matrix �−1
(n−1)T(Ĥn) at H to the the numerator, yielding

�̃n∗
2 (u)�−1

(n−1)T(Ĥn)�
n−1
1 (u) = �̃n∗

2 (u)�−1
(n−1)T(H)�n−1

1 (u)

+ �̃n∗
2 (u)A(1)

nT (H)�n−1
1 (u)(Ĥn − H)

+ 1
2
�̃n∗

2 (u)A(2)
nT (H)�n−1

1 (u)(Ĥn − H)2

+ 1
6
�̃n∗

2 (u)A(3)
nT (Hn)�

n−1
1 (u)(Ĥn − H)3.
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Thanks to the work of Hariz et al. (2024), we have the following three conclusions:

1
n
�̃n∗

2 (u)A(1)
nT (H)�n−1

1 (u) P−−−→
n→∞ k(1)

H,φ(u), (A6)

1
n
�̃n∗

2 (u)A(2)
nT (H)�n−1

1 (u) P−−−→
n→∞ k(2)

H,φ(u), (A7)

n− 3
2 �̃n∗

2 (u)A(3)
nT (Hn)�

n−1
1 (u) = OP(1), (A8)

where k(1)
H,φ(u), k

(2)
H,φ(u) are constants, Hn ∈ B(H, |Ĥn − H|), and A(1)

nT (H), A(2
nT(H), A(3)

nT (H) are

A(1)
nT (H) = −�−1

(n−1)T(H)
∂�(n−1)T(H)

∂H
�−1

(n−1)T(H),

A(2)
nT (H) = �−1

(n−1)T(H)
∂2�(n−1)T(H)

∂2H
�−1

(n−1)T(H)

+ 2�−1
(n−1)T(H)

∂�(n−1)T(H)

∂H
�−1

(n−1)T(H)
∂�(n−1)T(H)

∂H
�−1

(n−1)T(H),

A(3)
nT (H) = −�−1

(n−1)T(H)
∂3�(n−1)T(H)

∂3H
�−1

(n−1)T(H)

− 3�−1
(n−1)T(H)

∂�(n−1)T(H)

∂H
�−1

(n−1)T(H)
∂2�(n−1)T(H)

∂2H
�−1

(n−1)T(H)

− 3�−1
(n−1)T(H)

∂2�(n−1)T(H)

∂2H
�−1

(n−1)T(H)
∂�(n−1)T(H)

∂H
�−1

(n−1)T(H)

− 6�−1
(n−1)T(H)

∂�(n−1)T(H)

∂H
�−1

(n−1)T(H)
∂�(n−1)T(H)

∂H

× �−1
(n−1)T(H)

∂�(n−1)T(H)

∂H
�−1

(n−1)T(H).

It has been demonstrated in Esstafa (2019) that

1
n
�̃n∗

2 (u)�−1
(n−1)T(H)�n−1

1 (u) P−−−→
n→∞ 0. (A9)

The combination of Equations (A6), (A7), (A8) and (A9) allows us to deduce that

1
n
�̃n∗

2 (u)�−1
(n−1)T(Ĥn)�

n−1
1 (u) P−−−→

n→∞ 0.

Next, we consider the asymptotic properties of the denominator of Equation (A5). We can similarly
expand the denominator using a Taylor series around H, resulting in

�n−1∗
1 (u)�−1

(n−1)T(Ĥn)�
n−1
1 (u) = �n−1∗

1 (u)�−1
(n−1)T(H)�n−1

1 (u)

+ �n−1∗
1 (u)A(1)

nT (H)�n−1
1 (u)(Ĥn − H)

+ 1
2
�n−1∗

1 (u)A(2)
nT (H)�n−1

1 (u)(Ĥn − H)2.

Similarly, this part of the proof aligns with Lemma 1 (Esstafa, 2019) and satisfies

1
n
�n−1∗

1 (u)A(1)
nT (H)�n−1

1 (u) P−−−→
n→∞ k(3)

H,φ(u), (A10)

n− 3
2 �n−1∗

1 (u)A(2)
nT (H)�n−1

1 (u) = OP(1), (A11)

1
n
�n−1∗

1 (u)�−1
(n−1)T(H)�n−1

1 (u) P−−−→
n→∞

1
1 − φ2(u)

, (A12)
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where k(3)
H,φ(u)is a constant. The denominator in Equation (A5) converges in probability as follows:

1
n
�n−1∗

1 (u)�−1
(n−1)T(Ĥn)�

n−1
1 (u) P−−−→

n→∞
1

1 − φ2(u)
.

Combining the above equations, we find that when the numerator of Equation (A5) is multiplied by
1
n , it approaches 0, while the denominator, also multiplied by 1

n , converges to a constant. Furthermore,
since convergence in probability implies convergence in distribution, we conclude that

φ̂n(u)
P−−−→

n→∞ φ(u).

This establishes a clear relationship between the asymptotic behavior of the numerator and denomi-
nator, leading to the convergence of the estimated function.

A.5. Proof of Theorem 2.5

According to Theorem 2 (Hurvich et al., 1998), without loss of generality, we can assumem = [nδ] for
some 1

2 < δ < 2
3 . Let L denote convergence in distribution. We thus have

√
m(Ĥn − H)

L−−−→
n→∞ N (0,UK,δ),

where UK,δ is a constant related to K and δ. Building on the results from Equation (A5), we establish
that

√
m(φ̂n(u) − φ(u)) = √

m
�̃n∗

2 (u)�−1
(n−1)T(H)�n−1

1 (u)

�n−1∗
1 (u)�−1

(n−1)T(Ĥn)�
n−1
1 (u)

+ R(1)
n . (A13)

According to the proof of consistency and some results on Esstafa (2019), the denominator of the first
term on the right side of the above equation satisfies

1
n
�n−1∗

1 (u)�−1
(n−1)T(Ĥn)�

n−1
1 (u) P−−−→

n→∞
1

1 − φ2(u)
,

the nominator converges to a normal distribution

1√
n
�̃n∗

2 (u)�−1
(n−1)T(H)�n−1

1 (u) P−−−→
n→∞ N (0,

1
1 − φ2(u)

),

when n → ∞, and the reminder R(1)
n converges to 0. Thus we can rewrite Equation (A13) as follows:

√
m(φ̂n(u) − φ(u)) = √

m
1
n �̃n∗

2 (u)�−1
(n−1)T(H)�n−1

1
1
n�n−1∗

1 (u)�−1
(n−1)T(Ĥn)�

n−1
1 (u)

+ R(1)
n

=
√
m√
n

(1 − φ2(u))
1√
n
�̃n∗

2 (u)�−1
(n−1)T(H)�n−1

1 (u) + R(1)
n .

By Slutsky theorem, we can conclude that
√
m(φ̂n(u) − φ(u)) converges to a normal distribution.

Lastly, we aim to present these results in the form of a joint normal distribution. Drawing on
the findings from Hariz et al. (2024), the asymptotic distribution of

√
n(φ̂n(u) − φ(u)) can be

expressed as a constant multiple of the asymptotic distribution of (Ĥn − H). Moreover, according to
the Cramer–Wold theorem, the asymptotic distribution of

∑T
u=1(φ̂n(u) − φ(u)) still adheres to an

asymptotic normal distribution. Thus the vector(
(φ̂n(1) − φ(1)), (φ̂n(2) − φ(2)), . . . , (φ̂n(T) − φ(T)), . . . , Ĥn − H

)
converges to a Gaussian vector, tending towards a joint normal distribution. The covariance matrix of
this vector is


̃θ = UθU

θ , (A14)
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where

Uθ =
⎛⎝1, C(1)

H,φ(1)

(1 − φ2(1))
, . . . ,

C(1)
H,φ(T)

(1 − φ2(T))

⎞⎠

,

and C(1)
H,φ(u) is the constants related to φ(u) and H.

A.6. Proof of Theorem 3.1

To prove Theorem 3.1, we need to establish the following three lemmas and verify whether gH,φ(λ) is
regular. The regularity conditions of gH,φ(λ) will be demonstrated in the auxiliary results.

Lemma A.2: Let θ0 ∈ �, δ > 0, such that for any θ ∈ B(θ0, δ), it holds that

‖I(θ) − I(θ0)‖ ≤ K‖θ − θ0‖,
where K is some constant.

Proof: Without loss of generality, let B(θ0, δ) be a convex set in R
3. For ease of notation, gH,φ(λ) can

be denoted as gθ (λ). According to the relevant conclusions in Cohen et al. (2013) and the discussion of
regularity conditions for gH,φ(λ), it is known that for any k, j ∈ {1, 2, . . . , d}, the following inequality
holds:∣∣∣∣ 14π

(∫ π

−π

∂ log gθ (λ)

∂θk

∂ log gθ (λ)

∂θj
dλ
)

− 1
4π

(∫ π

−π

∂ log gθ0(λ)

∂θ0,k

∂ log gθ0(λ)

∂θ0,j
dλ
)∣∣∣∣ ≤ K‖θ − θ0‖,

where K is defined as

K = sup
θ∈B(θ0,δ)

(
∂

∂θi

(∫ π

−π

∂ log gθ (λ)

∂θk

∂ log gθ (λ)

∂θj
dλ
))

1≤i≤d
,

which is related to k and j. Furthermore, since the conditions (A1) and (A2) (Cohen et al., 2013) hold,
it follows that K < ∞, hence the lemma holds. �

Lemma A.3: For any θ ∈ �l, it follows from the distribution of the parameter θ that

�ln(θ)√
n

+ √
nI(θ) = OP(1).

Proof: The Lemma 3.6 (Cohen et al., 2013) implies that, from the distribution of θ , we have

E
(

�ln(θ)

n

)
→ −I(θ).

To determine the convergence rate of the above expression, Lemma 3 and Lemma 4 (Lieberman
et al., 2012) yield the following conclusion:

E
(

�ln(θ)

n

)
+ I(θ) = O(n−1+δ),

where δ is a positive real number. Therefore,

E
(

�ln(θ)√
n

)
+ √

nI(θ) = O(n− 1
2+δ).

Furthermore, by utilizing Lemma 3.6 (Cohen et al., 2013) once again, we obtain

Var
(

�ln(θ)√
n

)
= O(1).

Thus the proof is concluded. �
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Lemma A.4: Let {θn}n be a stochastic sequence satisfying θn − θ = oP(1). Then, according to the
distribution of parameter θ , for any k> 0, it holds that

�ln(θn)
n

− �ln(θ)

n
= OP(nk(θn − θ)).

Proof: Let Ck,θ be a compact convex set depending on k and θ , and θn ∈ Ck,θ . According to the proof
of Lemma 3.7 (Cohen et al., 2013), we have

sup
θn∈Ck,θ

∣∣∣∣∣ ∂3

∂ i1θ1∂ i2θ2 · · · ∂ idθd
ln(θn)
n1+k

∣∣∣∣∣ = OP(1),

where (i1, i2, . . . , id) ∈ {0, 1, 2, 3}d, satisfying i1 + i2 + · · · + id = 3. In conclusion, for a finite positive
random variable K, we have

P

(∥∥∥∥∥�ln(θn)
n

− �ln(θ)

n

∥∥∥∥∥ ≤ Knk(‖θn − θ‖
)

≥ P(θn ∈ Ck,θ ),

which implies �ln(θn)
n − �ln(θ)

n = OP(nk(θn − θ)) holds. �

According to the hypothesis of this theorem, we can deduce

√
n(θ̃n − θ) = √

n(θ̂n − θ) + I−1(θ̂n)
∇ln(θ̂n)√

n
. (A15)

Applying mean-value theorem to ∇ln(θ), we have

∇ln(θ̂n) = ∇ln(θ) + (θ̂n − θ)

∫ 1

0

�
ln(θ + v(θ̂n − θ)) dv, (A16)

Substituting Equations (A16) to (A15), we produce

√
n(θ̃n − θ) = √

n(θ̂n − θ)I−1(θ̂n)

(
I(θ̂n) +

∫ 1
0

�
ln(θ(v)) dv
n

)
+ I−1(θ̂n)

∇ln(θ)√
n

, (A17)

where θ(v) = θ + v(θ̂n − θ), v< 1. Next, we will discuss the consistency and asymptotic normality of
one-step estimator.

(1) Consistency of θ̃n
Observing Equation (A17), the first and second terms on the right-hand side can be expressed as

An = √
n(θ̂n − θ)I−1(θ̂n)

(
I(θ̂n) +

∫ 1
0

�
ln(θ(v)) dv
n

)

=
√
nδ(θ̂n − θ)I−1(θ̂n)

√
n1−δ

(
I(θ̂n) +

∫ 1
0

�
ln(θ(v)) dv
n

)
and

Bn = I−1(θ̂n)
∇ln(θ)√

n
= I−1(θ)

∇ln(θ)√
n

+
(
I−1(θ̂n) − I−1(θ)

) ∇ln(θ)√
n

.

First, we analyse the properties of An and derive the following equation:

I(θ̂n) +
∫ 1
0 �ln(θ(v)) dv

n
= (I(θ̂n) − I(θn))

+
(
I(θn) + �ln(θ)

n

)
+ 1√

n

∫ 1

0

(
�ln(θ(v))√

n
− �ln(θ)√

n

)
dv, (A18)
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based on Equation (A18) and Lemmas 6.2, 6.3, and 6.4. The convergence order of An√
n is

An√
n

= n− δ
2

(
OP(n− δ

2 ) + OP(n− 1
2 ) + OP(nk−

δ
2 )
)
.

Thus, when k − δ < 0, we have An√
n

P−−−→
n→∞ 0.

Second, we consider the property of Bn and it has the form of

Bn = I−1(θ̂n)
∇ln(θ)√

n
= I−1(θ)

∇ln(θ)√
n

+ (I−1(θ̂n) − I−1(θ))
∇ln(θ)√

n
.

According to Hariz et al. (2024) and Theorem 1 in Lieberman et al. (2012), we have

∇ln(θ)√
n

P−−−→
n→∞ 0.

When In(·) is a non-degenerate continuous function, as indicated by the above equation, it can be
observed that both the first and second terms ofBn tend to 0. Consequently, Bn√

n converges in probability
to 0, and naturally, it also converges in distribution to 0.

Combining the above results, we can conclude the consistency of θ̃n.
(2) Asymptotic normality of θ̃n
According to the results of Hariz et al. (2024), the equation

I−1(θ)
∇ln(θ)√

n
+ (I−1(θ̂n) − I−1(θ))

∇ln(θ)√
n

(A19)

converges in probability to a bounded limit as n → ∞. Simultaneously, the second term on the right-
hand side of Equation (A19) converges to 0. By applying the Slutsky theorem, we can verify the
asymptotic normality of θ̃n.

Appendix 2. Auxiliary results

Lemma A.5: Under the hypothesis on the parametric space, we have the following results hold.

(1) For any H ∈ [0, 1] and j ∈ {0, 1, 2, 3}, consider the expression ∂
∂λ

∂ j

∂ jH gH,φ(λ). Here gH,φ(λ) denotes
the spectral density of Yn as specified in Equation (11).

(2) For any j ∈ {0, 1, 2, 3} the functions ∂ j

∂ jH gH,φ(λ) are symmetric with respect to λ.
(3) For any δ > 0 and all (H, λ) ∈ [0, 1] × [−π,π]\{0}, the following bounds apply.

(a) C1,δ|λ|1−2H+δ ≤ gH,φ(λ) ≤ C2,δ|λ|1−2H−δ .
(b) | ∂

∂λ gH,φ(λ)| ≤ C3,δ|λ|−2H−δ .

(c) For any j ∈ {0, 1, 2, 3}, | ∂ j

∂ jH gH,φ(λ)| ≤ C4,δ|λ|−2H−δ ,
where Ci,δ represents constants for i = 1, 2, 3, 4.

These results establish that gH,φ(λ) satisfies the regularity conditions.

Proof: We start from Assertion (3)(a), which states that

gH,φ(λ) = CH

∣∣∣∣∣∣
T−1∑
p=0

e−ipλ

1 − φ(T)e−iλT

∣∣∣∣∣∣
2

(1 − cos(λ))
∑
j∈Z

1
|λ + 2jπ|2H+1 ,

where CH = 1
2π�(2H + 1) sin(πH) and �(·) denotes the Gamma function. According to Lemma 5.4

in Hariz et al. (2024), we have

K1,δ|λ|1−2H+δ ≤ CH(1 − cos(λ))
∑
j∈Z

1
|λ + 2jπ|2H+1 ≤ K2,δ|λ|1−2H−δ
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and
√
2T

1 − φ2
max(u)

≤
∣∣∣∣∣∣
T−1∑
p=0

e−ipλ

1 − φ(T)e−iλT

∣∣∣∣∣∣
2

≤
√
2T

1 − φ2
min(u)

,

where φ2
max(u) and φ2

min(u) are the maximum and minimum values of φ(u), respectively. Thus
Assertion (3)(a) has been proved and Assertion (3)(b) follows straightforwardly fromAssertion (3)(a).

Next, we discuss Assertion (3)(c), which can be obtained directly from lemma 5.4 in Hariz
et al. (2024). The partial derivative of gH,φ(λ) does not depend on |∑T−1

p=0
e−ipλ

1−φ(T)e−iλT |2, and the
modulus is bounded. �
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