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ABSTRACT
Bayesian Additive Regression Trees (BART) is a widely popular nonparametric regression model
known for its accurate prediction capabilities. In certain situations, there is knowledge suggest-
ing the existence of certain dominant variables. However, the BARTmodel fails to fully utilize the
knowledge. To tackle this problem, the paper introduces a modification to BART known as the
Partially Fixed BART model. By fixing a portion of the trees’ structure, this model enables more
efficient utilization of prior knowledge, resulting in enhanced estimation accuracy.Moreover, the
Partially Fixed BARTmodel can offermore precise estimates and valuable insights for future anal-
ysis even when such prior knowledge is absent. Empirical results substantiate the enhancement
of the proposed model in comparison to the original BART.
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1. Introduction

Bayesian Additive Regression Trees (BART) (Chipman et al., 2010) is a nonparametric regression model known
for its superior accuracy compared to other tree-based methods like random forest (Breiman, 2001) and Xgboost
(Chen&Guestrin, 2016). Furthermore, the BARTmodel deviates from the strict parametric assumptions of classical
models and combines the flexibility of machine learning algorithms with the rigidity of likelihood-based inference,
making it a potent inferential tool. Another advantage of the BART model is its robustness to hyper-parameter
selection.

When setting up a data analysis model, we often possess prior knowledge indicating the significant relation-
ships between certain explanatory variables (predictors) and the predicted variable through logical deduction
or background research. Particularly in spatial-temporal models, time or spatial variables are presumed to play
crucial roles. If we have knowledge of a portion of the model structure, we can construct a parametric or semi-
parametric model (Tan & Roy, 2019), with the parametric component representing the known structure. However,
in most situations, the model structure is not known with certainty. How can we fully utilize this type of prior
knowledge?

In the BARTmodel, a uniformdistribution prior is commonly used to select active predictors for splitting, result-
ing in equal selection probabilities for each variable. This contradicts our understanding that certain variables are
more important than others. One approach to incorporate prior knowledge is to assign higher prior probabilities
to important variables, although determining the prior is challenging. In this paper, we propose fixing the impor-
tant variables at the root of trees, introducing a new model called Partially Fixed BART (PFBART). The PFBART
model improves estimation accuracy compared to the original BART model when appropriate prior knowledge is
incorporated.

The paper is structured as follows: Section 2 provides a review of BART, including the MCMC algorithm ele-
ments used for posterior inference. In Section 3, we present a detailed introduction to PFBART. Section 4 describes
the conducted experiments, comparing and examining PFBART alongside the original BART. Finally, Section 5
presents the paper’s conclusions and suggests future research directions.

2. Bayesian additive regression trees (BART)

2.1. Model

This section motivates and describes the BART framework. We begin our discussion from a basic BART with
independent continuous outcomes, because this is the most natural way to explain BART.
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For data with n samples, the ith sample is consist of a p-dimensional vector of predictors Xi and a response
Yi(1 ≤ i ≤ n), and the BART model posits

Yi = f (Xi)+ εi, εi ∼ N
(
0, σ 2) , i = 1, . . . , n. (1)

To estimate f (X), a sum of regression trees is specified as

f (Xi) =
m∑
j=1

g
(
Xi;Tj,Mj

)
, (2)

where Tj is the jth binary tree structure andMj = {μ1j, . . . ,μbjj} is the parameters associated with bj terminal nodes
of Tj. Tj contains information of which bivariate to split on, the cutoff value, as well as the internal nodes’ location.
The hyperparameter number of treesm is usually set as 200.

2.2. Prior

BART is designed based on Bayes model. So we denote the prior distribution for BART model as P
(T1,M1, . . . ,Tm,Mm, σ). {(T1,M1), . . . , (Tm,Mm)} are assumed independent with σ , and (T1,M1), . . . , (Tm,Mm)

are also independent with each other, so we have

P (T1,M1, . . . ,Tm,Mm, σ) = P (T1,M1, . . . ,Tm,Mm)P(σ )

=
⎡
⎣

m∏
j=1

P
(
Tj,Mj

)
⎤
⎦ P(σ )

=
⎡
⎣

m∏
j=1

P
(
Mj | Tj

)
P

(
Tj

)
⎤
⎦ P(σ )

=
⎡
⎣

m∏
j=1

⎧⎨
⎩

bj∏
k=1

P
(
μkj | Tj

)
⎫⎬
⎭ P

(
Tj

)
⎤
⎦ P(σ ). (3)

From (3), we need to specify the priors of P(μkj | Tj), P(σ ), and P(Tj) respectively. For the convenience of com-
putation, we use the conjugate normal distribution N(μμ, σ 2

μ) as the prior for μij | Tj. The initial prior parameter
(μμ, and σμ) can be set through roughly computation. We also use a conjugate prior, here the inverse chi-square
distribution for σ , σ 2 ∼ vλ/χ2

v , where the two hype-parameters λ, v can be roughly derived by calculation. The
prior for Tj is specified and made up of three aspects.

(1) The probability for a node at depth d to split: given by α
(1+d)β . We can confine the depth of each tree by

controlling the splitting probability so that we can avoid overfitting. Usually α is set to 0.95 and β is set to 2.
(2) The probability on splitting variable assignments at each interior node: default as uniform distribution.

Dirichlet distribution is introduced for high dimension variable selection scenario (Linero, 2018; Linero
& Yang, 2018).

(3) The probability for cutoff value assignment: default as uniform distribution.

2.3. Posterior distribution

With the settings of priors (3), the posterior distribution can be obtained by

P [(T1,M1) , . . . , (Tm,Mm) , σ | Y]
∝ P (Y | (T1,M1) , . . . , (Tm,Mm) , σ)× P ((T1,M1) , . . . , (Tm,Mm) , σ) , (4)

where (4) can be obtained by Gibbs sampling. Firstm successive

P
[(
Tj,Mj

) | T(j),M(j),Y , σ
]

(5)

can be drawn where T(j) and M(j) consist of all the trees information except the jth tree. Then P[σ |
(T1,M1), . . . , (Tm,Mm),Y] can be obtained from explicit inverse gamma distribution.
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How to draw from (5) ? Note that Tj,Mj depend on T(j),M(j) and Y through Rj = Y −∑
w �=j g(X,Tw,Mw), and

it is equivalent to draw posterior from a single tree of

P
[(
Tj,Mj

) | Rj, σ
]
. (6)

We can proceed (6) in two steps. First we obtain a draw from P(Tj | Rj, σ), then draw posterior from P(Mj |
Tj,Rj, σ). In the first step, we have

P
(
Tj | Rj, σ

) ∝ P
(
Tj

)
P

(
Rj | Tj, σ

)
, (7)

P(Rj | Tj, σ) = ∫
P(Rj | Mj,Tj, σ)P(Mj | Tj, σ)dMj as marginal likelihood. Because conjugate Normal prior is

employed onMj, we can get an explicit expression of the marginal likelihood.
We proceed (7) by generating a candidate treeT∗j from the previous tree structure withMH algorithm. we accept

the new tree structure with probability

min

⎧⎨
⎩1,

q
(
T∗j ,Tj

)

q
(
Tj,T∗j

)
P

(
Rj | X,T∗j

)

P
(
Rj | X,Tj

)
P

(
T∗j

)

P
(
Tj

)
⎫⎬
⎭ , (8)

where q(Tj,T∗j ) is the probability for the previous tree Tj moving to the new tree T∗j .
The candidate tree is proposed using four type of moves.

(1) Grow: splitting a current leaf into two new leaves, the probability as 0.25.
(2) Prune: collapsing adjacent leaves back into a single leaf, the probability as 0.25.
(3) Swap: swapping the decision rules assigned to two connected interior nodes, the probability as 0.1.
(4) Change: reassigning a decision rule attached to an interior node, the probability as 0.4.

Once we have finished sample from P(Tj | Rj, σ), we can sample the jth leaf parameter μkj of the kth tree from

N(
σ 2

μ

∑nk
k=1 Rkj

nkσ 2
μ+σ 2 , σ 2σ 2

μ

nkσ 2
μ+σ 2 ), where Rkj is the subset of Rj allocated to the leaf node with parameter μkj and nk is the

number of Rkj allocated to that node. With all the m updates (Tj,Mj) and one update of σ , we finish one iteration
of the MCMC process. We repeat this process for many iterations and drop numbers of first unstable iterations and
finally keep the stable iterations as the non-parameter estimator.

3. Partially fixed BART

As mentioned earlier, a uniform distribution is typically employed as the prior for selecting splitting variables,
resulting in an equal probability for each variable to be chosen. Through logical inference or background analysis,
we may identify certain variables as more important than others in specific models. In such cases, it is necessary
to assign higher probabilities to these variables, such as the time variable in a time-related model or location vari-
ables in a spatial-related model. In these situations, simply applying the BART model fails to fully utilize this prior
knowledge. We applied the BART model to the data generated from scenario F1(x) in Section 4.1 in which we can
find that x1 is related to each part of the function, so it is a natural idea to force x1 to be in every regression tree.
Figure 1 illustrates the frequency of each variable in the model during the final iteration. It reveals that the impor-
tant variable x1 is not themost frequently selected; on the contrary, certain irrelevant variables like x7 exhibit higher
frequencies than x1.

When we possess such prior knowledge, we can anchor these variables at the topmost levels of the trees. Note
that in the case of ordinal splitting variables, samples with x ≤ c (where c represents the cut point for the splitting
variable) are directed to the left child node, while samples with x> c are assigned to the right child node.When there
is a need to fix multiple layers of variables, it is common to assign the same splitting variable to the left and right
child nodes, thus establishing variable fixing across layers. For instance, if we identify two variables as crucial in the
model, we can fix these two variables at the topmost two levels of the trees, effectively preventing other variables
from appearing at these levels.

The four moves for generating a new tree structure are modified.

(1) Grow: If a node in the fixed layers needs to be grown, only the assigned important variables are allowed to be
chosen as splitting variables.

(2) Prune: No changes are made unless a logical hyperparameter is in effect. Detailed information will be provided
later.



4 H. RAN AND Y. BAI

Figure 1. The frequency of each variable used in the BART model. X1 is an important variable. X6, . . . , X10 are irrelevant variables.

(3) Swap: The tree structure will not be changed if swapping two nodes violates the rule.
(4) Change: If a node in the fixed layer needs to be changed, the variable to be split is confined to the fixed variable

scope.

The details of PFBART can be referred to in Algorithm 1.
Three logical hyperparameters are introduced in PFBART to enhance control over the fixing activity.
The first logical hyperparameter, Prune, controls the prune process. If Prune is False and the node to be

pruned is in the fixed layers, the prune process will not alter the tree structure.
When dealing with multiple important variables, fixing each layer with each variable may be too demanding.

If Swap is True, these variables can appear at any fixed layer. Otherwise, the variables to be fixed must follow a
specific order. Specifically, the first important variable can only be selected in the first layer of the trees, and so on.

Given the BARTmodel’s restriction on tree depth, fixing multiple variables at the tree’s upper levels may hinder
the inclusion of other variables in lower level. Therefore, we introduce a logical parameter called ChangePrior.
When ChangePrior is False, we maintain the splitting probability unchanged. If ChangePrior is True, nodes
in the fixed layers adopt the same splitting probability as the root node of the trees. Nodes outside the fixed layers
undergo a probability adjustment to α(1+ d − h)−β , where h denotes the height of the fixed layers.

A toy example is used to demonstrate PFBART and the effect of the logical hyper parameter. We used data
generated from scenario F1(x). We take two trees from the two hundred trees as a brief example. If we use BART
model to fit the data, X1 may not be in every regression tree which we can see from the second tree of part A of
Figure 2.X1 andX2 are two variableswe fix in PFBART(X2 is fixed just to demonstrate the effect of hyper parameter).
In part B of Figure 2, we set Swap as false, which means the order is fixed. In our example we fix X1 at the first layer
and X2 at the second layer of the regression tree. In part C, Swap is true, so the variable in the first two layers must
be X1 or X2 and they don’t have to be in special order. By setting Prune to true in part D, the second tree exhibits
a single-layer tree structure. In contrast, in parts B and C, the tree structure always consists of more than one layer.

4. Illustrations

4.1. Simulation experiment

Initially, we illustrate the advantages of PFBART over BART in various scenarios. The data is generated based on
function

F1(X) = 10 sin(πX1X2)+ 5X2
1(X3 − 0.5)+ 10X3

1X3X4 + 5X4
1X5.
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Algorithm 1: Partially Fixed BART
Input: X: independent variable; Y : dependent variable; I: iterations;M: number of trees; F: number of

layers to be fixed; hPrune, hSwap, hChangePrior: hyperparameters to control the fixing behaviour.
Output: T: trees of size I × T.

1 for i← 1 to I do
2 for j← 1 toM do
3 Calculate residual of the current tree Rij;
4 Sample one action to change the current tree;
5 Sample one node to change;
6 if (action==grow or action==change) then
7 if depth(node)≤F then
8 if hSwap then
9 Sample split variable from the first F variables;

10 else
11 Split variable =depth(node);

12 else
13 Sample split variable from all variables;

14 Generate new tree structure T∗;
15 else if action==prune then
16 if depth(node)≤ F and (not hPrune) then
17 T∗ = Ti−1,j;
18 else
19 Prune the node and generate new tree structure T∗;

20 else if action==Swap then
21 if (depth(node)< F and (not hSwap)) or (depth(node)== F) then
22 T∗ = Ti−1,j;
23 else
24 Swap the node with one of its child and generate new tree structure T∗;

25 Calculate the MCMC ratio α(Ti−1,j,T∗);
26 Sample random uniform number U;
27 if (α(Ti−1,j,T∗) > U ) then
28 Ti,j = T∗;
29 else
30 Ti,j = Ti−1,j;
31 Sample tree parameter for tree Ti,j;

32 Sample σ from posterior distribution of inverse gamma distribution ;

To make comparation, considering another two scenarios which data is generated from functions

F2(X) = 10 sin(πX1X2)+ 5X2
2(X3 − 0.5)+ 10X3

1X3X4 + 5X4
1X5

and

F3(X) = 10 sin(πX6X2)+ 5X2
6(X3 − 0.5)+ 10X3

6X3X4 + 5X4
6X5.

In scenario F1(x), X1 is associated with every part of the function, indicating its crucial role. In scenario F2(x),
the second part is unrelated to X1, enabling us to evaluate PFBART’s performance when the fixed variable is less
significant. In scenario F3(x), X1 is an irrelevant variable in the model. To demonstrate that PFBART’s effectiveness
is independent of the variable selection process, we run themodel exclusively withX1, . . . ,X5 using data from F1(x).
This scenario is labelled as F4(x).

We generate 100 datasets for each function, with a sample size of 4000 in each dataset. Each dataset comprises
10 variables,X1, . . . ,X10, randomly sampled from a uniform distributionU(0, 1). The datasets are split equally into
training and testing subsets. In both BART and PFBART, the initial 500 unstable iterations are excluded, and the
following 1000 iterations are considered as the model result. The remaining parameters utilize the default settings.
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Figure 2. Toy example for PFBART.

Table 1. Settings for hyperparameter.

ChangePrior Prune

SET1 False True
SET2 False False
SET3 True True
SET4 True False

Each function was employed to predict the corresponding test set based on its respective training set. The
predictions were evaluated using the root mean squared error (RMSE),

RMSE =
√√√√ 1

2000

2000∑
i=1

(
f̂ (xi)− f (xi)

)2
.

In this experiment, two competitors of eXtreme Gradient Boosting (XGB) and random forests (RF) with the default
settings are introduced.We can see that BART outperforms XGB and RF in the four scenarios whichmeans the two
competitors can not recognize this special structure, so we mainly focus on the comparison of BART and PFBART
in this section.

Table 1 lists the four combinations of logical hyper parameter with which we conduct PFBART. Figure 3 shows
the boxplots of the 100 RMSE values for each scenario.

Some finding can be derived from Figure 3.

(1) The performance of different logical parameters follows a specific order in the four scenarios: SET1 ≈ SET2 >

SET3 > SET4. Setting the logical parameter ChangePrior to True is a trade-off for easier growth of deeper
trees at the cost of overfitting.When there is only one layer to fix, changing the splitting priority is unnecessary
and leads to overfitting.When ChangePrior is True, setting the logical parameter Prune to False increases
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Figure 3. Boxplots of the RMSE values for each method across the 100 data sets.

the probability of overfitting. However, when the splitting priority remains unchanged, allowing or disallowing
pruning in the fixed layer has little effect on the model. There is almost no difference between SET1 and SET2.
Therefore, the following discussion primarily focuses on comparing PFBART SET1 and BART.

(2) In scenario F1(X), PFBART reduces the median RMSE by approximately 15% compared to BART. This indi-
cates that if we possess right prior information that the fixed variable is related to every part of the model,
PFBART can archive more accurate estimations.

(3) In scenario F2(X), where a portion of themodel is unrelated to the assigned fixed variableX1, PFBART reduces
the median RMSE by approximately 9%. This suggests that PFBART can perform effectively in a wider range
of scenarios as long as the fixed variable is correlated with large part of the model.

(4) In scenario F3(X), where the fixed variableX1 is irrelevant to themodel, PFBART performs poorly due to fixing
an irrelevant variable, which introduces additional error to the model.

(5) In scenario F4(X), where only X1, . . . ,X5 are used in the model, PFBART still outperforms BART by approx-
imately 10%. This indicates that the effectiveness of PFBART is not solely attributed to the variable selection
process.

4.2. UCI data sets

In the previous simulation, we demonstrated how prior knowledge can be utilized to achieve better estimations. In
this section, we illustrate the use of PFBART on data without prior knowledge.

From the UCI dataset (Dua & Graff, 2017), we selected 14 datasets based on the following criteria. (1) Sample
size ranging from 240 to 5500. (2) Attributes ranging from 5 to 13. (3) Regression datasets, excluding time series
datasets. The details of the datasets can be referred to in Table 2.

For simplification purposes, we randomly removed samples from the dataset to ensure that the total sample size
is divisible by 10. Each dataset was evaluated using 10-fold cross-validation. We performed 10 randomizations for
each dataset. Each variable is fixed at the top of the trees.We used the relative RMSE, defined as the ratio of PFBART
RMSE to BARTRMSE for the same dataset, as ameasure of variable importance. Thus we obtained 10 such statistics
for each covariate, presented in Figure 4.

For the datasets Abalone, Forest Fire,WineQuality, QSARAquatic Toxicity, andQSARFish Toxicity, fixing every
variable had a similar effect on the BART model. This suggests that these variables all contribute to the model, and
no single variable plays a dominant role.



8 H. RAN AND Y. BAI

Table 2. UCI data sets information.

Data set name Size Covariate

Abalone 4170 8
Airfoil Self Noise 1500 5
Auto MPG 390 8
Bike Rental 730 10
Concrete Compressive Strength 1030 8
Energy Efficiency 760 8
Forest Fire 510 12
QSAR Aquatic Toxicity 540 8
QSAR Fish Toxicity 900 6
Real Estate Valuation 410 7
Strike 620 6
Tecator 240 13
Wine Quality 4890 11
Yacht Hydrodynamics 300 6

For the Airfoil Self Noise dataset, the variable X1, frequency, is highly correlated with the dependent variable
sound pressure level, as observed in Brooks et al. (1989).

In the AutoMPGdataset, the variableX6 (model year) is an important variable in themodel, as it reflects changes
in the MPG model due to scientific and technological advancements over different model years.

In the Bike Rental dataset, two variables, X2 (month) and X7 (feeling temperature), interact with other
independent variables to influence bike rental behaviour.

For the Concrete Compressive Strength dataset, fixing each variable results in slightly worse estimation. How-
ever, these variables are not irrelevant variables, so we can incorporate this information along with background
knowledge for future use.

In the Energy Efficiency dataset, X8 (Glazing Area Distribution) is an important variable as different types of
area distributions lead to different energy efficiency models.

In the Real Estate Valuation dataset, fixing X5 (latitude) and X6 (longitude) improves estimation accuracy. Con-
sidering the common knowledge that these variables interact with other variables such as X1 (transaction date)
and X2 (house age) to predict house prices, the results seem reasonable. In the next section, we will examine the
performance of PFBART on a larger real estate dataset.

In the Strike dataset, the two important variables,X1 (country) andX6 (union centralization), interact with other
independent variables to influence the strike volume.

The Tecator dataset is used to predict the fat content of a meat sample based on its near-infrared absorbance
spectrum. The dependent variables are principal components derived from the spectrum. No dominant variable
can be identified among the principal components, although the first four components appear to bemore important
than others.

In the Yacht Hydrodynamics dataset, fixing X5 (Froude number) improves the estimation. Based on background
information in hydrodynamics,X5 plays a significant role in predicting residuary resistance. Fixing other covariates
except X5 leads to worse estimation, especially for X4. However, removing X4 from the model also results in worse
estimation, suggesting that X4 should be included in the model. It is not a variable with global influence, similar to
X4 in the Airfoil Self Noise and Bike Rental datasets. This indicates that variables with high relative RMSE are not
necessarily useless in the model.

4.3. Beijing housing price

The Beijing house price data (Lin et al., 2023) is used to demonstrate the process of fixing multiple variables in a
spatial-temporal model. The response variable is the unit house price, and the covariates include location, floor,
number of living rooms and bathrooms, presence of an elevator, and other variables. Based on prior knowledge,
we assume that location and year of trading have a significant influence on the model. In this study, the longitude,
latitude, and year of trading are fixed at the top three layers of the regression trees.

After preprocessing, the dataset consists of 296255 valid samples. Due to the large sample size and the time-
consuming nature of MCMC iterations, a random selection of 30% of the total samples is used for training, while
the remaining 70% is used for testing. This process generates 10 datasets, and for each dataset, PFBART is run with
eight combinations of logical hyperparameters, as listed in Table 3. The relative RMSE is used as the evaluation
metric.

Figure 5 presents the results of eight different PFBART models with varying hyperparameter settings. All eight
models outperform BART, with SET6 yielding the best performance.
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Figure 4. Relative RMSE for every covariate in UCI data sets.

The results confirm our hypothesis that spatial-temporal variables play a crucial role in the model. In other
words, a significant portion of the variance in house prices is related to these three variables.

The good performance of SET6 can be explained as follows.

(1) Fixing multiple layers in the tree has the side effect of making it difficult for other covariates to be included in
the model. To address this, we can adjust the splitting probability in a way that allows non-fixed layers to grow
as if without the fixed layers, thus facilitating deeper growth.
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Table 3. Hyper parameter combinations.

ChangePrior Prune Swap

SET1 True True False
SET2 True True True
SET3 False False False
SET4 False False True
SET5 True False False
SET6 True False True
SET7 False True False
SET8 False True True

Figure 5. Relative RMSE for PFBART with Beijing house price data.

(2) Preventing nodes from being pruned results in regression trees with more than two layers. Conversely,
including pruning may lead to unexpected shallow trees that do not align with our expectations.

(3) When fixing more than one layer, should the order of fixing be considered? By setting Swap to True, we
can relax this restriction and make the model more flexible to approximate the true model effectively. This
change allows the three variables (longitude, latitude, and year of trading) to grow at the fixed layers without
considering their order.

5. Conclusion and looking forward

When constructing statisticalmodels, particularly those related to spatial-temporal analysis, it is known that certain
variables have a strong correlation with the majority of the model either through logical deduction or background
knowledge. This paper presents a method, referred to as Partially Fixed BART, that leverages this prior knowledge
by fixing these important variables at the top of the regression trees. Through data experiments and real-world
examples, it is demonstrated that this approach leads to improved performance compared to the original BART
model. Additionally, even in the absence of prior information, the proposed model can still be employed to achieve
more accurate estimations or serve as a measure of variable importance.

The primary contribution of this paper is the development of PFBART, an extension of the BART model. In a
previous work by Linero and Yang (2018), a soft BART model was introduced, which is better suited for approxi-
mating continuous or differentiable functions. Building upon this, we plan to incorporate the fixing of important
variables based on the soft BART model and investigate whether this modification yields further improvement.

PFBART demonstrates superior performance in datasets where certain dominant variables exert significant
influence. However, in most scenarios, each variable is only correlated with a portion of the overall variation, and
there is no dominant variable. Currently, we are focussed on analysing the model structure and leveraging this
information to enhance its performance.
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