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ABSTRACT
Bayesian inference is one of the most important issues under the model selection procedures
in statistics. This paper performed a Bayesian analysis of posteriors using a well-known Weibull
model with high fitting performance. We proved that there exist necessary and sufficient con-
ditions for the priors to yield proper posteriors and finite posterior moments based on record
data. Moreover, we found a significant implication through different well-known objective pri-
ors. Finally, for illustrationpurposes, aMonteCarlo simulationprocedure is done in thepaper. The
results indicate that thedeveloped inferencemayhave a significant contributionwithin Bayesian
analysis through applications across different areas.

ARTICLE HISTORY
Received 11 September 2023
Revised 28 December 2023
Accepted 15 February 2024

KEYWORDS
Weibull distribution;
objective prior; proper
posterior; moments; records

MSCS (2010)
62F15; 62N05

1. Introduction

Record values are seen as observations that overpass the previous ones in a sequence of lifetime observations. They
were introduced in Chandler (1952) as a framework that deals with the time of occurrence of weather extremes
from a sequence of weather conditions which can be interpreted as realizations of independent and identically
distributed (iid) random variables. It has been acknowledged that records have a major overall value in sports,
economics, meteorology, medicine and so on.

Record values occupy a special place in the insurance market. Their use has had outstanding impact on overall
insurance market development throughout history. Insurance claims are the best example of impact that record
values have in the insurance market, especially in insurance claims where portfolio strongly depends on the occur-
rence of record events in e.g. earthquakes or weather disasters (Balakrishnan et al., 1996). In addition, record values
have a major impact on basic daily activities such as recording athletic achievements and predicting future ones
(Empacher et al., 2023; Gembris et al., 2007). Such record events are obtained sequentally, directly recorded by
appropriate measure instruments or by some other intuitive methods. Other examples may be found in breaking
wooden beams (Glick, 1978), extreme weather conditions (Benestad, 2003), biology (Kauffman& Levin, 1987), etc.
Interested readers may refer to Arnold et al. (2011), Nevzorov (2000) and Wergen (2013) for a detailed review of
recent developments within this theory.

In this paper, we study the so-called kth record values. They were introduced in Dziubdziela and Kopociński
(1976) from which we have the following definition of upper kth record values and upper kth record times. Let
T1,k = k, R1(k) = X1:k and for n ≥ 2, let Tn,k = min{j : j > Tn−1,k, Xj > XTn−1,k−k+1:Tn−1,k}, where Xi:m denotes
the ith order statistics in a sample of size m from the underlying iid sequence {Xi, i ≥ 1}. Then, the sequence
{Tn,k, k ≥ 1} is denoted as a sequence of kth upper record times while the sequence {Rn(k) = XTn−1,k−k+1:Tn−1,k , n ≥
1} is denoted as a sequence of upper kth record values.

To add additional input, let us generate a sample of 30 random observations from a standard exponential dis-
tribution for presenting a step-by-step extraction guidance on the upper kth records. The observations are 0.7423,
0.6271, 1.0574, 0.3278, 0.3473, 1.6076, 1.0107, 0.3315, 0.1660, 0.6252, 0.1356, 0.1816, 0.3203, 0.2604, 0.4287, 0.2552,
0.2088, 0.0815, 0.3717 and 0.2175. Let us take k=2. The first upper second record time (T1,2) and value (R1(2)) are
obtained as

T1,2 = 2, R1(2) = X1:2 = min{X1,X2} = 0.6271.

For n=2, we have

T2,2 = min{j : j > 2, Xj > X1:2} = 3, R2(2) = X2:3 = 0.7423.

Next, for n=3, we have

T3,2 = min{j : j > 3, Xj > X2:3} = 4, R3(2) = X3:4 = 1.0574.
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Based on the sample, there will be nomore upper second records, so the extracted second upper records are 0.6271,
0.7423 and 1.0574.

Basically, an upper kth record value is the kth largest yet seen in a partial sample. For the case k=1, kth records
reduce to ordinary records. From the above sample, we have extracted ordinary records as follows: 0.7423, 1.0574
and 1.6076.

Record statistics have found their place in various statistical fields such as characterization problems
(Juhás & Skřivánková, 2014; Vidović, 2021), goodness of fit tests (Doostparast, 2011), predictions (Volovskiy
& Kamps, 2023; Wang & Ye, 2015), information theory (Syam & Barakat, 2022), reliability analysis (Kizilaslan
& Nadar, 2017), etc.

Let R1(k),R2(k), . . . ,Rn(k) be the first n upper kth records from the Weibull distribution with probability density
function (pdf) and cumulative density function (cdf)

f (x | μ,β) = βμβxβ−1 e−μβxβ

, x > 0, (1)

and

F(x | μ,β) = 1 − e−μβxβ

, x > 0, (2)

with the shape parameter β > 0 and the scale parameter μ > 0.
Although new models with higher performance-fitting applications are introduced daily (Martinez et al., 2022;

Shakhatreh et al., 2020), the two-parameterWeibull model (Weibull, 1951) is still recognized as a relevant statistical
tool formodelling complex data. Its tractable failure rate function is increasing, decreasing or is constant depending
on the value of the parameterβ , i.e. forβ > 1, β < 1 orβ = 1, respectively. This property provides higher flexibility
inmodelling data fromhydrology, weather forecasting, insurance, engineering and other complex reliability studies.
It can be reduced to exponential distribution and Rayleigh distribution by fixing β = 1 and (β , θ) = (2, σ

√
2), for

σ > 0, respectively.
Many authors have considered and discussed the selection process of the prior distributions in Bayesian infer-

ence. See, for instance, Nasiri and Hosseini (2012). Prior distributions are an essential part in the formulation
of posterior distributions. Their design utilizes scientists’ previous knowledge about unknown parameters which
are mostly subjective, hence the name subjective priors. Accordingly, most cases of subjective priors for model
parameters are implemented under the Bayesian method. However, in situations where the influence of scientists’
knowledge needs to be reduced, priors with low influence information on the original data may be seen as the best
choice. These priors are considered to be objective priors. Several authors have considered the selection of the most
adequate non-informative or objective priors for model parameters based on their respective properties and their
influence on the posteriors. Examples can be found in Gugushvili and Spreij (2014), Kass andWasserman (1996), P.
L. Ramos et al. (2017, 2022) and Shakhatreh et al. (2021). This way of reasoning has some interesting applications. It
was suggested in Northrop and Attalides (2016) that a necessary case-by-case study of priors to yield a proper pos-
terior has to be performed, with respect to the selected distribution at hand. For instance, papers Kang et al. (2017),
Lee et al. (2015, 2017), Kim and Seo (2020) and P. L. Ramos et al. (2023) provide more details on this topic.

The objective of this paper can be viewed through two paths. The first path introduces sufficient and necessary
conditions on the posterior to be proper depending on objective priors based on the upper kth record values. The
novelty of such results comes from the fact that record values can be overlooked as order statistic from a sample
whose size is determined by the values and the order of occurrence of the observations. Besides this, record val-
ues can be seen as extremes and such inference results may be useful in extreme value theory. Consequently, we
can deduce wheather the posterior moments are finite based on objective priors by incorporating sufficient and
necessary conditions. The objective priors used here are the uniform prior, Jeffrey’s first rule prior, Jeffrey’s prior,
maximal data information prior (MDIP) and reference priors. The second path provides a simulated estimation of
posterior density based on given record data by implementing the Metropolis-Hastings (M-H) algorithm. This will
bring us some additional clues on the behaviour of the moments of posteriors besides the theoretical ones.

Next, we address the problem of finding sufficient and necessary conditions for an objective before leading to
a proper posterior in Section 2 and we discuss the finiteness properties of the associated posterior moments. The
applications of the main results on various objective priors are presented in Section 3 as well as estimating the
posteriors for parameter by the M-H sampler. The final section concludes this paper.

2. Prior and posterior distribution

Suppose we observe n upper kth record values r(k) = (r1(k), r2(k), . . . , rn(k)) from a sequence of iid random variables
followingWeibull(μ,β) with pdf (1). Then, the joint likelihood function for parameters μ and β , given r(k), is (see



STATISTICAL THEORY AND RELATED FIELDS 3

Arnold et al., 2011)

L(r(k)) = kn(1 − F(rn(k)))k
n∏

i=1

f (ri(k))
1 − F(ri(k))

, (3)

for 0 < r1(k) < r2(k) < · · · < rn(k) < ∞.
From (1) to (3), we have

L(r(k)) = knβnμnβ e−kμβ rβn(k)
n∏

i=1
rβ−1
i(k) . (4)

Using prior distribution π(μ,β), we obtain the joint posterior distribution for (μ,β) as

π(μ,β|r(k)) = π(μ,β)

π(r(k))
βnμnβ e−kμβ rβn(k)

n∏
i=1

rβ−1
i(k) , (5)

where the associated normalized constant π(r(k)) has the following form

π(r(k)) =
∫ ∞

0

∫ ∞

0
π(μ,β)βnμnβ e−kμβ rβn(k)

n∏
i=1

rβ−1
i(k) dμ dβ . (6)

Next, we present a theorem that provides uswith the necessary and sufficient conditions that a posterior distribution
is proper for a particular general class of prior distributions based on record values.

Theorem 2.1: Let π(μ,β) be a general class of priors such that

π(μ,β) ∝ e−pβ−1
μrβq, (7)

where r,q and p are constants or functions of parameters μ and β. Then the following results hold

(i) If r �= −β − 1, then the posterior distribution of (β ,μ) under the prior π(β ,μ) is improper.
(ii) If r = −β − 1, p=0 and n ≥ 2, then the posterior distribution of (β ,μ) under the prior π(β ,μ) is proper if and

only if n+q>0.
(iii) If r = −β − 1, p=0 and n=1, then the posterior distribution of (β ,μ) under the prior π(β ,μ) is improper.

Proof: Let us follow the same notations, definitions and propositions as those given in the appendices from E.
Ramos, Ramos, et al. (2020). Also, we will use the fact that integral

∫ ∞
0 xa−1 e−bx dx is finite if and only if a>0.

Using prior (7), the posterior (5) has the following form

π(μ,β|r(k)) ∝ βn+qμnβ+r e−pβ−1−kμβ rβn(k)
n∏

i=1
rβ−1
i(k) . (8)

With this in mind, we can obtain the form of the normalizing constant as

π(r(k)) ∝
∫ ∞

0

∫ ∞

0
π(μ,β)βnμnβ e−kμβ rβn(k)

n∏
i=1

rβ−1
i(k) dμ dβ

∝
∫ ∞

0
βn+q−1 e−pβ−1

∏n
i=1 r

β−1
i(k)

(rβn(k))
n+ r+1

β

∫ ∞

0
un−1+ r+1

β e−u du dβ

∝
∫ ∞

0
βn+q−1 e−pβ−1

∏n
i=1 r

β−1
i(k)

rnβn(k)

∫ ∞

0
un−1+ r+1

β e−u du dβ

∝
∫ ∞

0
βn+q−1 e−pβ−1

∏n
i=1 r

β

i(k)

rnβn(k)

∫ ∞

0
un−1+ r+1

β e−u du dβ . (9)

The last form of the integral is obtained using the transformation u = kμβrβn(k).
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Proof of (i): We divide the proof in the cases where r < −β − 1 and r > −β − 1. Let us first suppose that r <

−β − 1 and n=1. Then, it follows from (9) that

π(r(k)) ∝
∫ ∞

0
βn+q−1 e−pβ−1

r−(n−1)β
1(k)

∫ ∞

0
u

r+1
β e−u du dβ , (10)

and since r+1
β

< −1 for all β > 0, we get that
∫ ∞
0 u

r+1
β e−u du = ∞ for all β > 0 and hence π(r(k)) = ∞.

Now let us suppose that r < −β − 1 and n>1.We have that for everyβ ∈ (0,− r+1
n ], the relation n − 1 + r+1

β
<

−1 holds and, therefore,
∫ ∞
0 un−1+ r+1

β e−u du = ∞, yielding

βn+q−1 e−pβ−1
∏n

i=1 r
β

i(k)

rnβn(k)

∫ ∞

0
un−1+ r+1

β e−u du = ∞. (11)

This directly implies that

π(r(k)) ∝
∫ ∞

0
βn+q−1 e−pβ−1

∏n
i=1 r

β

i(k)

rnβn(k)

∫ ∞

0
un−1+ r+1

β e−u du dβ

≥
∫ − r+1

n

0
βn+q−1 e−pβ−1

∏n
i=1 r

β

i(k)

rnβn(k)

∫ ∞

0
un−1+ r+1

β e−u du dβ = ∞, (12)

and, henceπ(r(k)) = ∞.When−nβ − 1 < r < −β − 1, i.e.− r+1
n < β < −r − 1, we have

∫ ∞
0 un−1+ r+1

β e−u du <

∞ and

π(r(k)) ∝
∫ −r−1

− r+1
n

βn+q−1 e−pβ−1
∏n

i=1 r
β

i(k)

rnβn(k)

∫ ∞

0
un−1+ r+1

β e−u du dβ

=
∫ −r−1

− r+1
n

βn+q−1 e−pβ−1
∏n

i=1 r
β

i(k)

rnβn(k)
�

(
n + r + 1

β

)
dβ . (13)

By the mean value theorem, for some β0 ∈ (− r+1
n ,−r − 1), the following relation holds

π(r(k)) ∝ β
n+q−1
0 e−pβ−1

0

∏n
i=1 r

β0
i(k)

rnβ0n(k)

�

(
n + r + 1

β0

)

∝ β
n+q−1
0 �

(
n + r + 1

β0

)
. (14)

Using the Stirling formula, we see that π(r(k)) tends to ∞ when n → ∞.

Let us suppose now that r > −β − 1. Using h = ln(
rnn(k)∏n
i=1 ri(k)

) ≥ 0 we have

π(r(k)) ∝
∫ ∞

0
βn+q−1 e−pβ−1

e−hβ
∫ ∞

0
un−1+ r+1

β e−u du dβ

∝
∫ ∞

0
βn+q−1 e−pβ−1

e−hβ�

(
n + r + 1

β

)
dβ . (15)

Using the transformation t = n + r+1
β

in the integral (15), and noting that e−p t−n
r+1 = e−

pt
r+1 e

pn
r+1 ∝ e−

pt
r+1 , we get

π(r(k)) ∝
∫ ∞

n

�(t)

e
pt
r+1 (t − n)n+q+1 eh

r+1
t−n

dt. (16)

By using the Stirling formula, limt→∞ eh
r+1
t−n = 1 and limt→∞ (t−n)n+q+1

tn+q+1 = 1 and we have

lim
t→∞

�(n)

e
pt
r+1 (t − n)n+q+1 eh

r+1
t−n

= lim
t→∞

�(t)

e
pt
r+1 tn+q+1

= ∞. (17)

Therefore, we may conclude that π(r(k)) = ∞ for r > −β − 1. This proves part (i).
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Proof of (ii): If we suppose that r = −β − 1, p=0 and h = ln(
rnn(k)∏n
i=1 ri(k)

) > 0 we derive from (9)

π(r(k)) ∝
∫ ∞

0
βn+q−1 e−hβ�(n − 1) dβ ∝

∫ ∞

0
βn+q−1e−hβ dβ . (18)

The last integral converges if and only if n + q > 0. This proves part (ii).
Proof of (iii): If we suppose that r = −β − 1, p = 0 and n=1, then from (9) it follows that

π(r(k)) ∝
∫ ∞

0
βq

∫ ∞

0
e−u du dβ =

∫ ∞

0
βq dβ , (19)

and thus π(r(k)) = ∞, which completes the proof. �

Remark 2.1: For special values of hyperparameters p,q and r, prior (7) may be seen as a product of inverted gamma
density for parameter β and Pareto density for parameter μ thus making it a supreme selection. Furthermore, its
form can be adapted to shift distributions similar to distributions of records and hence acknowledges what is almost
certain to occur. For example, one may look at Empacher et al. (2023).

Remark 2.2: In the proof of Theorem 2.1 in E. Ramos, Ramos, et al. (2020) the case when r ∈ (−mβ − 1,−1) for
m>1 was neglected, but overall it does not affect the final and outstanding statement of this theorem.

Remark 2.3: In Bayesian context, adequate priors usually can overpass computational burdens possibly encoun-
tered in posteriors. This emerges in many cases; for example Thornton et al. (2013) and Liang et al. (2008), aim
to produce posteriors with simple and tractable expression, to enhance their predictive performances, coverage
abilities, computational efficiency, adaptivity and hypothesis testing often using priors with very complex forms.
Therefore, the prior (7) can be seen as a special instance of optimizing the posterior (5) that ensures its proper
form. Alongside, it should be mentioned that the constant k has no influence on the above inference. We can also
state that there is no assurance that posterior moments will be finite if the posterior is proper, so it is of interest to
check under which conditions the posterior moments are finite under objective priors.

Corollary 2.2: Let π(μ,β) be a class of priors such that

π(μ,β) = μrβq, (20)

where r and q are constants or functions of parameters μ and β and suppose that the posterior related to π(μ,β) is
proper. Then the posterior moments relative to β are finite, and the posterior moments relative to μ are not finite for
record data.

Proof: Theorem 2.1 shows that r = −β − 1, n ≥ 2 and for k>0, n > −q > −(q + k). Following the prior
π∗(μ,β) = βkπ(μ,β) = μ−β−1βk+q we have that the posterior is proper and

E(βk | r(k)) =
∫ ∞

0

∫ ∞

0
βk+n+qμ(n−1)β−1 e−kμβ rβn(k)

n∏
i=1

rβ−1
i(k) dμ dβ < ∞.

By the same reasoning, given k>0 and denoting π∗(μ,β) = μkπ(μ,β) = μk+pβq, we have that the posterior is
improper which directly means that

E(μk | r(k)) =
∫ ∞

0

∫ ∞

0
μk−β−1βq e−kμβ rβn(k)

n∏
i=1

rβ−1
i(k) dμ dβ = ∞.

Therefore, the proof is completed. �

Remark 2.4: The allocated knowledge behind Proposition 2.2. favours the need for proving the finitness of the
moments of parameters before applying the overall Bayesian inference and hence diminishes unnecessary confu-
sion. Without such an analysis, there may be room for suspicion within the practical aspect through simulation
studies. The selection of the priors is the fundamental step of this procedure, indicating their overall applicability
and practicality. Specially, in these terms, the prior (20) has a limited value and a more suitable prior should be
used.
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Remark 2.5: Several different forms of theWeibull model (1) encounter in the literature due to reparameterization.
One of its main features is the possibility of creating low-variance gradient estimators that may have a high impact
on various studies (see e.g. Teimouri & Nadarajah, 2013). We will present two schemes that follow this approach:

f (x | θ ,β) = β
xβ−1

θβ
e−( x

θ
)β , θ > 0, β > 0, (21)

and

f (x | α,β) = βxβ−1 e−αβ e−xβ e−αβ

, α ∈ R, β > 0. (22)

The first one is obtained by lettingμ = 1
θ
in (1), while the second one is gained by substitutingμ = e−α in (1). The

statements of above theorems can be reformulated in a quite direct manner for models specified by (21) and (22).

3. Applications

Objective priors, such as uniform prior, Jeffrey’s first rule prior, Jeffrey’s prior, MDIP and reference prior, are
perceived by many researchers as being adequate as overall priors, but their usefulness depends mostly on their
underline properties. For detail, one can see Bernardo (2005). Indeed, these priors are seen as particular cases of
the prior π(μ,β) ∝ e−pβ−1

μrβq. Theorem 2.1 indicates that the posterior relative to such priors has a improper
form when n=1, so we will start with a general assumption that the sample length of record dataset is greater than
one, i.e. n>1, which means that at least two records are used for analysis.

For the first prior, we will consider the uniform prior, i.e. π1(μ,β) ∝ 1. This prior has a simple form but under-
mines the information about the unknown parameters in most cases and in general it lacks the ability of invariance
due to reparametrization although this was not the case for parametrizations (21) and (22).

Proposition 3.1: The posterior density using uniform prior is improper, in which case the posterior moments relative
to β are finite and posterior moments relative to θ are not finite.

Proof: For this case, the priorπ(μ,β) = π1(μ,β), fromwhichwe have r = 0, q = 0 and p=0. Using Corollary 2.2
the statement directly follows. �

A similar situation follows for Jeffrey’s prior for (θ ,β), within parameterization (21), is proportional to one i.e.
π2(θ ,β) ∝ 1; see Jafari and Bafekri (2021).

For the third case, the reference priors, which were nicely introduced in Berger et al. (2015), Bernardo (1979,
2005), for parametrization (22), when either α is the parameter of interest and β is the nuisance parameter or β is
the parameter of interest and α is the nuisance parameter being proportional to one so the preceding argumentmay
easily be modified and confirmed for this case. Under single parameter problems, the reference priors are invarinat
under reparameterization, while in themultiparameter models, it depends on the quantity of interest. Their relative
merits are discussed in Shakhatreh et al. (2021), E. Ramos, Egbon, et al. (2020), P. L. Ramos et al. (2021) and E.
Ramos, Ramos, et al. (2020).

The fourth objective prior under consideration is Jeffrey’s first rule (see Sun, 1997). As (μ,β) ∈ (0,∞)2, its form
is given by

π4(μ,β) ∝ 1
μβ

. (23)

Proposition 3.2: The posterior density using prior π4 is improper, in which case the posterior moments relative to β

are finite and posterior moments relative to μ are not finite.

Proof: The result follows directly from the Theorem 2.1. �

Maximal data information prior (MDIP) was introduced in Zellner (1977) as a prior information of the param-
eters that maximizes the information based on the data. In the case of record data, MDIP can be obtained as
π5(α,β) ∝ exp(E[ln fn(x | α,β)]) where fn(x | α,β) is the pdf of the nth upper kth record value from (22). By
Madadi and Tata (2014), MDIP is presented as

π5(α,β) ∝ e−β−1
. (24)
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Table 1. Dataset of breaking strength of jute fibre at 20
mm in gauge lengths.

71.46 419.02 284.64 585.57 456.60 113.85
187.85 688.16 662.66 45.58 578.62 756.70
594.29 166.49 99.72 707.36 765.14 187.13
145.96 350.70 547.44 116.99 375.81 581.60
119.86 48.01 200.16 36.75 244.53 83.55

Proposition 3.3: The posterior density using π5 is improper for all n>1.

Proof: The result follows directly from Theorem 2.1 using parameterization (22). �

The statement of Theorem 2.1 provides us a criterion that an objective prior needs to satisfy to yield a proper
posterior. None of the mentioned objective priors meet the criterion. This will save the effort of finding an exact
prior distribution when there is no sufficient information in record values.

3.1. Data analysis

To illustrate the usefulness of the proposedmethods, we analyse records from a practical dataset withWeibull fitting
distribution and study to examine the behaviour of sample-based posteriors. Since it is not possible to directly derive
the posterior due to the complex formof (5), aMonteCarlo technique is used. In this analysis, anM-Halgorithmhas
been choosen and implemented within the packageMHadaptive of the statistical software R (R Core Team, 2024).

Without reducing generality, let us fix k=1 for the record sample scheme and extract from the data that consist
of breaking strength measurements of jute fibre at 20 mm in gauge lengths found in Xia et al. (2009). The size of
this dataset is 30 as shown in Hassan et al. (2020) thatWeibull distribution is an adequate fitting model. The dataset
is presented in Table 1. The maximum likelihood estimates of the Weibull distribution parameters are μ̂ = 1.7866
and β̂ = 0.0036. These estimates are based on the whole sample.

If we consider the above results, Weibull records, crucial for our analysis, can be pulled out from the above
dataset. Extracted records are 71.46, 419.02, 585.57, 688.16, 756.7 and 765.14.

Based on extracted records, the M-H algorithm with normal proposal distribution generates samples from the
target distribution (5) with the prior (23), as specified in the following steps.

Step 1. Choose initial values for (μ,β) as (μ̂, β̂) = (1.7866, 0.0036).
Step 2. Given that at the jth step, (μ,β) takes the values (μ(j),β(j)), then the following holds:

(μ(j+1),β(j+1)) ∼ N+
2 ((μ(j),β(j)),�−1),

where N+
2 is the positive truncated normal distribution and � is the posterior Fisher information matrix

estimated by the Laplace approximation method. Hence, � has the following form

� =
[
0.446 −2.76 × 10−3

−0.003 5.85 × 10−5

]
.

Step 3. Let

γ = min

{
1,

π(μ(j+1),β(j+1) | r(k))
π(μ(j),β(j) | r(k))

}
.

Step 4. Choose U ∼ Uniform[0, 1].
Step 5. If U ≤ γ , then accpet (μ(j+1),β(j+1)), otherwise (μ(j+1),β(j+1)) = (μ(j),β(j)).
Step 6. Repeat steps 2–5 N times and obtain the sample (μ(j),β(j)), ȷ = 1, . . . ,N.

Samples of 100,000 random variates generated from which the initial 10,000 was discarded as a burn-in sample.
Under this setting, we obtained an acceptance rate of 20.9 % which is in the range of 10-40% as suggested by Neal
and Roberts (2008). The sample was then tinned by a factor of 15 to yield low mutually autocorrelations and use
those remaining observations to estimate the posterior density functions.

Graphical diagnostics tools, such as trace andAutocorrelation function(ACF) plots based on the sample, are used
to examine the convergence of the M-H algorithm. Figure 1 shows the histogram and trace plot for parameters μ

and β under prior (23). From the trace plot, we can observe a random scatter about some mean value with a fine
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Figure 1. Histograms and trace plots for parameters β andμ.

Figure 2. ACF for β .

mixing of the chains for posterior values of β and μ. The ACF plots presented in Figures 2 and 3 show very low
autocorrelations of chains for such values of β and μ, i.e. ACFs decay to 0 very fast. All these results indicate a
satisfying convergence of theM-H algorithm, according to Robert andCasella (2010). Additionally, we usedmedian
as the Bayesian point estimation of the parameters μ and β along with their standard deviations (SDs) and 95%
HDI credible intervals obtained using package HDInterval in R. These results are presented in Table 2.

A clue on the convergence issues on the moments related to the parameter μ is found in simple graphical mon-
itoring like the histogram. Readers may find a similar situation with deviant behaviour or lack of convergence
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Figure 3. ACF forμ.

Table 2. Summary of the Bayesian estimates.

Parameter Median SD 95% HDI

μ 1.4091 0.6187 (0.5432, 2.7754)
β 0.0042 0.0065 (0.0014, 0.0181)

indicators in Example 7.18 (Robert & Casella, 2010). Overall, such graphical indices may serve as a confirmation
on the theoretical convergence issues established in Proposition 3.2. for the kth moments of μ, for k ≥ 1.

4. Conclusion

In this paper, two perspectives have been addressed. First, we have made it clear how objective priors influence
the posteriors under record framework for the Weibull model, which is often used as a reliable model with high
performances in real data from various aspects. We have noted clear conditions on the objective priors to yield
proper posteriors and illustrated their applicability through some well-known prior distributions such as uniform
prior, Jeffrey’s first rule, Jeffrey’s prior, MDIP and reference priors. A relationship between the hyperparameters of
the priors and the parameters of the distribution has been used to distinguish proper posteriors from the improper
ones. A natural extension on the finitness of the moments of the parameters has been analysed in detail for each of
the observed prior. The second perspective of the paper has involved applications of the proposed inference through
simulation estimations of posteriors based on real industrial data. Such a study revealed a high level of consistency
between theoretical results and real data-based practical realizations.
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