
Statistical Theory and Related Fields

ISSN: 2475-4269 (Print) 2475-4277 (Online) Journal homepage: www.tandfonline.com/journals/tstf20

Reinforced variable selection

Yuan Le, Yang Bai & Fan Zhou

To cite this article: Yuan Le, Yang Bai & Fan Zhou (20 Jun 2025): Reinforced variable selection,
Statistical Theory and Related Fields, DOI: 10.1080/24754269.2025.2516346

To link to this article: https://doi.org/10.1080/24754269.2025.2516346

© 2025 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group.

Published online: 20 Jun 2025.

Submit your article to this journal

Article views: 223

View related articles

View Crossmark data

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tstf20

https://www.tandfonline.com/journals/tstf20?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/24754269.2025.2516346
https://doi.org/10.1080/24754269.2025.2516346
https://www.tandfonline.com/action/authorSubmission?journalCode=tstf20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=tstf20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/24754269.2025.2516346?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/24754269.2025.2516346?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/24754269.2025.2516346&domain=pdf&date_stamp=20%20Jun%202025
http://crossmark.crossref.org/dialog/?doi=10.1080/24754269.2025.2516346&domain=pdf&date_stamp=20%20Jun%202025
https://www.tandfonline.com/action/journalInformation?journalCode=tstf20

SS

T
A

T
I
S

T
I
C

A
L

 T

H
E

ORY AND
 R

E
L

A
T

E
D

F

I
E

L
D

S

STATISTICAL THEORY AND RELATED FIELDS
https://doi.org/10.1080/24754269.2025.2516346

Reinforced variable selection

Yuan Lea, Yang Bai b and Fan Zhoub

aSchool of Mathematics and Statistics, Fuzhou University, Fuzhou, People’s Republic of China; bSchool of
Statistics and Data Science, Shanghai University of Finance and Economics, Shanghai, People’s Republic of China

ABSTRACT
Variable selection identifies the best subset of covariates when build-
ing the prediction model, among all possible subsets. In this paper, we
propose a novel reinforced variable selection method, called ‘Actor-
Critic-Predictor’. The actor takes an action to choose variables and the
predictor evaluates the action based on a well-designed reward func-
tion, where the critic learns the reward baseline. Wemodel the variable
selection process as a multi-armed bandit and update the subset of
selected variables using anatural policy gradient algorithm.Weprovide
an analytical framework on how different errors impact the perfor-
mance of our method theoretically. Large amounts of experiments on
synthetic and real datasets show that the proposed framework is easily
implemented and outperforms classical variable selection methods in
a wide range of scenarios.

ARTICLE HISTORY
Received 11 November 2024
Revised 13 March 2025
Accepted 1 June 2025

KEYWORDS
Variable selection;
reinforcement learning;
natural policy gradient

1. Introduction

Variable selection (VS), also known as feature selection, is one of the fundamental problems
in statistics and machine learning. Variable selection has been widely used in various fields,
including causal inference (Shortreed & Ertefaie, 2017), computer vision (Barbu et al., 2016),
nature language processing (Lewis, 1992), and recommender systems (Mirzadeh et al., 2005).
One typical example is the genome-wide association study (GWAS) (Guyon et al., 2002). A
standard GWAS approach is to scan tens of thousands of genes and look for genetic markers
that can be used to predict the presence of a disease. A small subset of genes usually con-
tains most of the disease information. In this case, variable selection is required to eliminate
unrelated genes and improve the classification performance. In general, an effective variable
selection helps reduce input dimensionality, improves prediction performance, and facilitates
data understanding.

VS methods can be divided into three main categories according to the ways they
select variables. Filtering methods independently rank all variables based on some pre-
defined score functions. RELIEF (Kira & Rendell, 1992) measures the variable impact on
the neighbourhood of each training sample. The neighbourhood is determined by using the
Euclidean distance built with all candidate variables. Sure independence screening (SIS) (Fan
& Lv, 2008) ranks features according to some marginal utility, for example, the marginal
correlation when fitting a linear regression. Some other score functions include statistical

CONTACT Yang Bai statbyang@mail.shufe.edu.cn School of Statistics and Data Science, Shanghai University of
Finance and Economics, 777 Guoding Road, Yangpu District, Shanghai 200433, People’s Republic of China

© 2025 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creative
commons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in anymedium, provided the
original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository
by the author(s) or with their consent.

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/24754269.2025.2516346&domain=pdf&date_stamp=2025-06-17
http://orcid.org/0000-0002-4660-4542
mailto:statbyang@mail.shufe.edu.cn
http://creativecommons.org/licenses/by-nc/4.0/

2 Y. LE ET AL.

scores (variance, t-score, chi-squared score, Gini index Gini, 1912), similarity scores (Lapla-
cian score He et al., 2005, SPEC Zhao & Liu, 2007, Fisher score Hart et al., 2000, Trace Ratio
Nie et al., 2008), and information-theoretical-based scores (Mutual Information Battiti, 1994,
MRMR Peng et al., 2005, CI Lin & Tang, 2006, JMI Yang &Moody, 1999, CMI Vidal-Naquet
&Ullman, 2003). Despite the computation efficiency (Fard et al., 2013), the variables selected
by filtering methods are non-optimal since the filtering is done in the preprocessing step and
is independent of the main task.

Wrapper methods evaluate the power set generated by all the candidate variables and
estimate the generalization error for each possible subset. Although these methods are theo-
retically optimal if the computing resources are rich and thememory storage is large enough,
one big challenge in practice is how to effectively explore all possible subsets of variables and
minimize the computational cost. Some greedy (forward or backward) searching methods
(Hall, 2000) are easy to implement but may end up with some local optimums. Some heuris-
tic methods are proposed to address the ‘Exploration versus Exploitation’ (EvE) dilemma,
such asmixing forward and backward selection (T. Zhang, 2011), combining global and local
search (Boullé, 2007).

Embedded methods assume that only a small subset of variables is useful and thus apply
regularization in model training to ensure sparsity. Tibshirani (1996) introduces Least abso-
lute shrinkage and selection operator (Lasso) to do variable selection where the L1 penalty
is used to fit the regression model. Some other penalty functions may also be considered,
such as smoothly clipped absolute deviation (SCAD) (Fan & Li, 2001) and minimax con-
cave penalty (MCP) (C. Zhang, 2010). When it comes to multi-classification problems or
multi-objective regression problems, Lp,q regularization is used, and L2,1 norm is commonly
used. Nie et al. (2010) proposes a computationally efficient and robust algorithm by apply-
ing the L2,1 norm to both the loss function as well as the regularization term. As for VS
in unsupervised learning, Cai et al. (2010) proposes multi-cluster variable selection by first
obtaining pseudo-labels from the graph Laplacian through spectral analysis and then using
the conventional regularization methods in supervised learning. However, most of these
methods are designed for linear model structure. Bach (2008) extends the regularization
method to the nonlinear case by multiple kernel learning, and more about kernel methods
in VS (Chen et al., 2017; Varma & Babu, 2009) have been studied. Another way to deal with
nonlinear problems is through tree models. A well-known method is to use random for-
est (Breiman, 2001) to calculate the importance score of each variable. Recently, Lemhadri
et al. (2021) introduces regularization to neural networks and proposes LassoNet to achieve
feature sparisity. Embedded methods also struggle with the EvE dilemma as the wrapper
methods do, although they usually search in a constrained model space.

How to define a valid hypothesis space and introduce an efficient searching strategy
is a fundamental problem for variable selection. Some recent studies try to address this
issue by using reinforcement learning (RL). As a ‘trial-and-error’ method, RL can gradu-
ally approach the optimal subset of variables by learning from historical trajectories. Gaudel
and Sebag (2010) formalizes the variable selection problem as a Markov decision process
(MDP) and proposes an RL-based searching algorithm called feature UCT selection (FUSE)
together with an exploration strategy (upper confidence tree, UCT). FSTD (Fard et al., 2013)
modifies FUSE by using Upper Confidence Gragh (UCG) (Fard et al., 2012) instead of
UCT. FSTD also replaces the original Monte Carlo method in FUSE by temporal differ-
ence (TD) method (Sutton, 1988), which is further improved by Fang et al. (2019) with deep
Q-network (DQN). K. Liu et al. (2019) proposes a multi-agent RL framework where each

STATISTICAL THEORY AND RELATED FIELDS 3

variable is regarded as an agent and the state space is the characteristics of the selected vari-
ables. All these methods are value-based, and can only learn deterministic policies. They also
require some tree-based searching strategies to ensure the exploration effects and approx-
imate the optimal policy. Moreover, the stopping criteria of these methods needs to be
carefully designed, which makes the whole training process quite complicated. Recently, Y.
Liu and Ročková (2023) uses Thompson sampling to do variable selection from Bayesian
perspective and gives some theoretical results on regret bounds.

Considering the disadvantages of existing RL methods, this paper proposes a novel vari-
able selection algorithm called ‘Actor-Critic-Predictor’ (ACP). The actor takes an action to
choose variables. The predictor evaluates the action by giving a reward, helping the actor
update its policy, and guiding the critic to learn a baseline of the reward. We use a policy-
based method to discover the optimal policy, where the actor can adaptively change the
searching scope.We opt for a policy-based approach over value-basedmethods due to several
key reasons. Firstly, policy-based methods with stochastic policies naturally balance explo-
ration and exploitation without requiring additional mechanisms like ε-greedy, which is
crucial when navigating the exponentially growing search space of variable selection. Fur-
thermore, stochastic policies provide a natural representation of uncertainty, where selection
probabilities reflect our confidence in each variable’s importance, offering more nuanced
information than binary decisions. From an optimization perspective, policy-based meth-
ods enable direct gradient-based optimization, which proves more efficient and stable than
the tree-based search strategies employed by value-based methods such as FUSE and FSTD.
Experiments on both synthetic and real datasets show that this framework is general and
easily implemented. The whole architecture of the proposed ACP method is illustrated in
Figure 1. Our main contributions are summarized as follows.

• We pay attention to stochastic policies and firstly develop a policy-based RL algorithm
using natural policy gradient to solve variable selection problems.

• We theoretically analyze the impact of both the optimization error and the model error
on the final performance.

• Some well-designed numerical experiments in both regressions and classifications pro-
vide some insights into the selection consistency which are ignored by previous RL-based
methods. Extensive experiments on both synthetic and real datasets show the superiority
of the proposed algorithm over some classical VS methods.

2. Reinforced variable selection

We consider a general variable selection problem as follows,

y = f (xtrue) + ε, (1)

where xtrue = (x1, x2, . . . , xd)� ∈ R
d consists of all the true covariates that are related to the

response y. f denotes some unknown function, and ε represents a random noise which is
independent of xtrue. In many cases, we only observe x = (x1, . . . , xd, . . . , xp)� ∈ R

p other
than xtrue. x contains all elements of xtrue, although some unrelated covariates are also
included. The main goal of variable selection is to find all the true covariates in xtrue given x
and y.

4 Y. LE ET AL.

Figure 1. Reinforcement learning framework for variable selection.

2.1. Variable selection asmulti-armed bandit

We formalize the variable selection problem as a multi-armed bandit (MAB), which needs to
determine the action setA and the corresponding reward function r. For variable selection,
A = {0, 1}p and a = (a1, . . . , ap)� ∈ A is any action to take. In particular, aj = 1 for j ∈
{1, 2, . . . , p} if the jth variable is selected. xa := {xj : aj = 1}pj=1 denotes the set of covariates
selected by action a.

Our goal is to find a variable subset to minimize the generalization error. Naturally, we
let r = {ra}a∈A and define the reward of a specific action a as the negative value of the
generalization error given as follows,

ra = −Ex,y
[
l(y, fa(xa))|a

]
, (2)

where l is some pre-defined loss function, and fa is the best predictor of y using xa such that
fa = argminf Ex,y[l(y, f (xa))|a]. The reason we use generalization error instead of the fitting
error to represent the reward function is that the policy tends to select all the m variables
to minimize the fitting error. MAB can be viewed as a one-step MDP, i.e., in the six tuple
(S ,A,P, r, γ , ρ) of an MDP, where the state set S has only one element, the initial state dis-
tribution ρ is a Dirac distribution of that element, there is no state transfer probability P, and
the discount factor γ = 0.

2.2. Policy

A policy is a distribution of a ∈ A, denoted by π . Let rt be the reward at timestep t which
satisfies E[rt|a] = ra, and define

ρ(π) = lim
T→∞

1
T

E [r1 + r2 + · · · + rt + · · · + rT |π] =
∑
a∈A

π(a)ra. (3)

Our goal is to find a policy π to maximize ρ(π).
Let a∗ be the action that selects all elements in xtrue without any unrelated covariate being

included. Assuming that ra∗
is the largest of all rewards, then theoretically there exists an

STATISTICAL THEORY AND RELATED FIELDS 5

optimal policy π∗ = argmaxπ ρ(π) of the following form:

π∗(a) =
{
1, if a = a∗,
0, otherwise.

Suppose that each variable has a probability of being selected, denoted by θj where j =
1, . . . , p. Then we can define such a stochastic policy as

πθ (a) =
p∏

j=1

{
θ
aj
j (1 − θj)

1−aj
}
,

where θ = (θ1, . . . , θp) and satisfies
∑

a∈A πθ (a) = 1. Each aj in this policy is obtained by
sampling from a Bernoulli distribution parameterized by θj. The larger θj is, the more likely
the jth variable will be selected.We want the probabilities corresponding to the true variables
to be as large as possible after training, while the probabilities of the irrelevant variables are
not very large.

3. The Actor-Critic-Predictor algorithm

In this section, we introduce the proposed Actor-Critic-Predictor (ACP) algorithm and
all its important components. We also analyze the impact of different errors on the final
performance from theoretical perspective.

We resort to natural policy gradient when optimizing the objective function defined in
(3). According to Sutton and Barto (2018), we have

∇θρ(θ) =
∑
a

∇θπθ (a)ra = Eat∼πθ

[
(rt − rbaseline)∇θ logπθ (at)

]
, (4)

where ∇θ denotes the derivative with respect to θ . rbaseline is the reward baseline, which is
uncorrelated to the action. at and rt are the action, and reward at the tth timestep. By calcula-
tion, it is easy to get∇θ logπθ (a) = a

θ
− 1−a

1−θ
. With the gradient, we can update θ by gradient

ascent. However, the direction of the gradient is not the most rapid ascent direction. Hence,
Kakade (2001) proposes the natural policy gradient method:

θ (m+1) = θ (m) + F(θ (m))†∇θρ(θ (m)),

where F(θ) = Ea∼πθ
[∇θ logπθ (a)∇θ logπθ (a)�]. F† is theMoore-Penrose pseudoinverse of

F andm is the training step. It is difficult to compute F(θ)† when the dimension is very high.
So we consider computing F(θ)†∇θρ(θ). Define

Lθ
π(w) = Ea∼π

[
(w�∇θ logπθ (a) − (ra − rbaseline))2

]
, w ∈ R

m. (5)

Let w∗
θ denote the smallest norm solution to minimize Lθ

π(w), and then we have

w∗
θ = F(θ)†∇θρ(θ).

Therefore, the updates of ACP algorithm are

θ (m+1) = θ (m) + w∗
θ (m) , w∗

θ (m) = arg min‖w‖2≤W
Lθ (m)

π (w). (6)

Note that the iterations above are in the population level. In the implementation of the
algorithm, expectations are approximated by the empirical means of samples. Besides, the

6 Y. LE ET AL.

real reward ra is not known, and we only have its estimate r̂a from the predictor by solv-
ing a supervised learning problem. Therefore, the difference between r and r̂may induce an
empirical gap.

We make some modifications to the notation of the objective function by adding a sub-
script r to denote the objective function ρr(π) obtained using the specified reward function
r and under the policy π . Assuming that π̂ is the policy obtained by ACP algorithm, we can
theoretically evaluate the performance of π̂ by measuring the difference between the objec-
tive function of the optimal policy and itself, i.e., ρr(π̂) − ρr(π

∗). The following proposition
shows that this performance discrepency can be decomposed into two parts: optimization
error and reward modelling error.

Proposition 3.1: Let π̂∗ = argmaxπ ρr̂(π) denote the theoretically optimal solution where r̂
is the estimate of r, and then the difference between π̂ and π̂∗ is the optimization error, denoted
as εopt. Total variation difference DTV(π̂‖π̂∗) = supa |π̂(a) − π̂∗(a)| is used to measure this
error. The difference between r̂ and r is the reward modelling error. Assume |r̂a − ra| ≤ εmod
for all a ∈ A, and further assume ||r||∞ ≤ R where R is a given constant. Then

∣∣ρr(π̂) − ρr(π
∗)

∣∣ ≤ 2Rεopt + 2εmod.

The proof of this proposition can be found in Appendix 1.

Remark 3.1: • The assumption that ||r||∞ ≤ R ensures that the rewards are bounded,
which is typically satisfied in practice through proper normalization.

• The assumption that |r̂a − ra| ≤ εmod for all a ∈ A requires that our reward estimator has
bounded error across all possible variable subsets. This is reasonable when the predictor
is well-trained and the reward function is well-behaved. If the true reward function is
linear, and we use Lasso as the predcitor. Under the restricted eigenvalue condition, we
can achieve a convergence rate of O(d log(p)

n) for d-sparse signals in p dimensions, with
sample size n (Bickel et al., 2009). If we use neural network as the predictor, for functions
with bounded second derivatives, εmod ≤ O(s−2/p) where s is the number of parameters
and p is the input dimension (Yarotsky, 2017).

• The optimization error εopt: Agarwal et al. (2021) provides a theoretical analysis on natural
policy gradient algorithm. Under their assumptions, our algorithm can achieve εopt ≤
O(

√
log |A|
M), where A is the action set, M is the iterations that the algorithm runs for. In

our case, |A| = 2p, and therefore, εopt ≤ O(
√

p
M).

3.1. Algorithm implementation

We now introduce the main procedure of the proposed ACP algorithm, where more details
can be found in Appendix 2.

Now we have n observations {(xi, yi)}ni=1, the expectation in (2) should be replaced by
the empirical mean and fa needs to be estimated. To avoid over-fittings, the samples used to
estimate fa should be independent of those used to compute the empirical mean of the loss
function.

STATISTICAL THEORY AND RELATED FIELDS 7

To address this problem, we employ a data splitting strategy. After getting an action at
at timestep t, the whole dataset is randomly split into two parts, where the training set
{(xi, yi)}n1i=1 and validation set {(xj, yj)}n2j=1 have n1 and n2 samples respectively, such that
n1 + n2 = n. We use the training set to build the predictor f̂a and the validation set to
compute the reward, i.e.,

f̂at = argmin
f

1
n1

n1∑
i=1

[
l(yi, f (xati))

]
, (7)

rt = − 1
n2

n2∑
j=1

l(yj, f̂at (x
at
j)). (8)

Thus, we can guarantee that E[rt|a] = E[l(y, f̂a(xa))|a] = r̂a. The procedure for computing
the reward function is summarized in Algorithm 1 in Appendix 2.

The next step is to calculate w. Note that (5) can be viewed as a linear regression prob-
lem with ∇θ logπθ (a) as the covariates and r̂a − rbaseline as the response. Therefore, a set
of actions abatch = {a1, . . . , aB} with batch B can be sampled by the policy πθ , and then
r̂batch = {̂r1, . . . , r̂B} and ∇batch = {∇θ logπθ (a1), . . . ,∇θ logπθ (aB)} can be computed by
the aforementioned procedures to calculate the reward. We employ a simple critic to learn
the baseline rbaseline, which is calculated as the exponentially weighted moving average of the
observed rewards. Finally, w is obtained by a linear regression with ∇batch as covariates and
r̂batch − rbaseline as the response. To avoid the case of ordinary least squares regression with
no solution for B<p, we use a ridge regression with a small penalty parameter to ensure that
the solution is feasible. In addition, to ensure that the denominator of∇θ logπθ (a) is not 0, θ
must be strictly greater than 0 and less than 1.We clip θ to [e, 1 − e] to satisfy this constraint,
where e is a small probability quantity. The pseudo code of ACP algorithm is summarized in
Algorithm 2 in Appendix 2.

3.2. Predictor for reward

According to Proposition 3.1, a good estimate of the reward function is strikingly important
since it impacts the final performance through the model error. A simple and direct way is
to fit a linear model, but there will be a problem of model misspecification. Intuitively, if the
model is wrong, the reward computed based on this model can not well represent the value
of the selected variable subset. We will illustrate it with synthetic data later. To address this
problem, we use neural networks (NNs) to model the predictor.With the powerful represen-
tation capabilities of NNs, we can fit the real function well. The network architecture of the
predictor and more training details are in Appendix 2.

Training a deep learning model is usually time consuming in practice. To accelerate the
training process, we create a dictionary to store all the generated action-reward pairs. The
keys index the subsets of selected variables and the values are the corresponding prediction
error. Each time we encounter a same set of variables that has already beenmemorized by the
dictionary, we can directly locate the subset and use the stored value to represent the reward
function instead of recalculating it. If the set of variables is unobserved before, we create a
new index for it and compute the corresponding reward. With this acceleration strategy, the

8 Y. LE ET AL.

Table 1. List of true fuctions.

True f Details

1. y = ∑8
j=1 βjxj xj

i.i.d.∼ N(0, 1) for j = 1, . . . , p.
2. y = ∑8

j=1 βjxj {xj}pj=1 ∼ N(0,�),� ij = 0.9|i−j| .

3. y = β1x1 + β2x2x3 + β3x4 + β4x5x6 + β5x7 + β6x8 xj
i.i.d.∼ N(0, 1) for j = 1, . . . , p.

4. y = W2
�relu(W1X) X ∼ N(0, I8),W1 ∈ R

32×8,W2 ∈ R
32.

5. P(y = 1) = 1/(1 + exp(− ∑8
j=1 βjxj)) xj

i.i.d.∼ N(0, 1) for j = 1, . . . , p.
6. Multi-classification (5 classes) make_classification (n_samples= 200,

n_features= 50, n_informative= 8, n_redundant= 0,
n_repeated= 0, n_classes= 5) in scikit-learn.

training time can be significantly reduced by about 60 percent as many repeated calculations
are skipped.

4. Numerical experiments

In this section, we conduct several numerical experiments to examine the empirical perfor-
mance of the proposed ACP algorithm under different model assumptions, including linear
regressions, non-linear regressions and classifications. For the synthetic experiments, the
default number of true covariates is d = 8, the default number of candidate covariates is
p = 50, and the default sample size isn = 200. The randomnoise ε follows a normal distribu-
tion, such that ε ∼ N(0, 0.52). The details of the data generating procedure are summarized
in Table 1. In all situations, we assume that the coefficients β ’s of the true covariates have the
same value 1, i.e., βj = 1 for all xj in xtrue.

The comparative methods we selected include Lasso (with penalty parameter λ selected
based on AIC and BIC), Logistic regression with L1 penalty (penalty parameter cho-
sen through cross-validation), Random Forest, Thompson Variable Selection (TVS, Y. Liu
& Ročková, 2023), and FSTD (Fard et al., 2013). Since Lasso is only suitable for regres-
sion tasks, TVS is only applicable to regression and binary classification tasks, and logistic
regression with L1 penalty and FSTD are only suitable for classification tasks, we use the
corresponding comparison methods based on the type of task.

ACP andTVS choose the variableswhose values of θ andposterior probabilities are greater
than a preset threshold relatively, which are both set to 0.9 in our simulations. RandomForest
selects variables with importance score greater than the average score of all variables. FSTD
chooses variables whose value functions are greater than 0. Lasso and logistic regression with
L1 penalty select variables with non-zero coefficients.

We evaluate all the compared methods using four metrics: Accuracy (TP+TN
TP+TP+TN+FN),

Precision (TP
TP+FP), Recall (

TP
TP+FN), and F1 score (

2precision·recall
precision+recall), where TN, FN, FP and TP

represent True Negative, False Negative, False Positive and True Positive respectively. These
four metrics all range from 0 to 1. The larger they are, the better the performance.

Our simulation experiments are divided into three parts. The first part shows the com-
parison of the results of our proposed method with other methods in the cases of Table 1.
The second part compares the results of ACP algorithm using a linear predictor with other
methods in the case where the real function is a linear function under different settings of
sample size and variable dimensionality. The third part demonstrates the impact of themodel
misspecification on ACP algorithm.

https://github.com/scikit-learn

STATISTICAL THEORY AND RELATED FIELDS 9

Figure 2. Results of ACP algorithm using neural-network predictor and other VS methods on different
types of true functions in Table 1. n = 200, p = 50, d = 8. The variable selection performance is evaluated
by Accuracy, Precision, Recall and F1 score. The height of the bar is the average of 50 independent runswith
the error bar on top being one standard deviation away from the mean. The legend above applies to the
first four regression problems, while the legend below corresponds to the last two classification tasks.

4.1. The ACP algorithm using neural-network predictor

We compare the results of ACP with other VS methods for a sample size of n = 200 and
variable dimensionality of p = 50. Figure 2 shows the results of 50 independent runs. In the
regression problems, taking the linear function with cross terms as an example, although
Lasso (BIC) and Random Forest have about the same Precision as ACP and TVS even
achieves the best Precision, they have only a relatively low Recall, indicating that they miss
some true variables, specifically those involved in interaction terms. ACP, on the other hand,
benefits from the powerful representation capability of the neural network. Predictor can bet-
ter fit the true function, and the reward can better guide the actor to select the true variables.
In the classification tasks, FSTD performs very poorly in multi-class classification task, so we
have not presented its results. Although ACP does not achieve the best in Recall, the Preci-
sion of other methods was very low, indicating that they selecte large numbers of irrelevant
variables. Therefore, in a comprehensive manner, ACP achieves optimal performance in all
six cases in terms of Accuracy and F1 score.

4.2. The ACP algorithm using linear predictor

In this section we investigate the comparison among ACP using a linear predictor and other
methods if the true function is indeed linear.

Figure 3 depicts the results of these methods run 50 times on linear function with cor-
related variables under different sample sizes. As can be seen from the figure, Lasso (CV)
has a lower Precision, which indicates that it selects many irrelevant variables. Random For-
est has a lower recall, showing that it ignores some true variables. Lasso (AIC) and Lasso
(BIC) perform well, but are still lower in precision than ACP when the sample size is small,
indicating that they still select some irrelevant variables. Additionally, TVS exhibits unstable

10 Y. LE ET AL.

Figure 3. Results of ACP algorithm and other VS methods on linear functions with correlated variables
under different sample sizes. p = 50, d = 8, and n = {100, 200, 300, 400}. The variable selection perfor-
mance is evaluated by accuracy, precision, recall and F1 score. Each error bar is drawn by 50 independent
runs, with the dot being the mean and one standard deviation above and below.

Table 2. Results of ACP algorithm and other VS methods on linear functions with correlated variables
under different sample sizes. p = 300, d = 8, and n = {100, 200}.

ACP Lasso_AIC Lasso_BIC Lasso_CV Random Forest TVS

n = 100
Accuracy 1.000± 0.001 1.000± 0.000 1.000± 0.000 0.987± 0.011 0.990± 0.006 0.976± 0.003
Precision 0.982± 0.041 0.976± 0.049 0.989± 0.033 0.462± 0.201 0.488± 0.140 0.620± 0.485
Recall 0.965± 0.061 1.000± 0.000 1.000± 0.000 1.000± 0.000 0.988± 0.037 0.100± 0.106
F1 score 0.972± 0.035 0.987± 0.027 0.994± 0.018 0.607± 0.183 0.641± 0.129 0.167± 0.158
n = 200
Accuracy 1.000± 0.000 1.000± 0.000 1.000± 0.000 0.988± 0.012 0.998± 0.001 0.991± 0.005
Precision 0.998± 0.016 0.989± 0.033 0.998± 0.016 0.532± 0.238 0.820± 0.092 1.000± 0
Recall 0.990± 0.034 1.000± 0.000 1.000± 0.000 1.000± 0.000 1.000± 0.000 0.670± 0.204
F1 score 0.993± 0.020 0.994± 0.018 0.999± 0.008 0.663± 0.210 0.898± 0.056 0.782± 0.161

The variable selection performance is evaluated by accuracy, precision, recall and F1 score. The form represents mean± std.

performance with small sample sizes, where its recall deteriorates significantly, while ACP
remains excellent performance.

We also consider the case where the variable dimension is larger than the sample size.
Table 2 demonstrates the results where p = 300 and n = {100, 200}. The conclusions are sim-
ilar to the previous ones. These findings highlight the advantages of our approach, especially
in scenarios with limited data availability or when identifying all relevant variables is crucial.

We also conduct experiments on linear functions with independent variables, and the
results can be found in Table A2 and Figure A1 in Appendix A.1.

STATISTICAL THEORY AND RELATED FIELDS 11

Table 3. Results of 50 independent runs of Lasso methods and ACP algorithm using linear and neural-
network (NN) predictor on linear function with cross terms.

ACP (linear reward) Lasso_AIC Lasso_BIC Lasso_CV ACP (NN reward) TVS

Accuracy 0.918± 0.010 0.772± 0.094 0.898± 0.026 0.779± 0.087 0.966± 0.046 0.987± 0.001
Precision 0.969± 0.072 0.423± 0.134 0.778± 0.159 0.433± 0.149 0.971± 0.060 0.992± 0.039
Recall 0.507± 0.046 0.670± 0.124 0.550± 0.083 0.640± 0.147 0.900± 0.152 0.505± 0.024
F1 score 0.664± 0.043 0.501± 0.100 0.635± 0.074 0.495± 0.102 0.927± 0.103 0.669± 0.023

n = 200, p = 300 and d = 8. The variable selection performance is evaluated by accuracy, precision, recall and F1 score. The
form represents mean± std.

Table 4. Time consumption of a single run of ACP algorithm using neural-network (NN) predictor for
different sample sizes and input dimensions on binary classification setting.

n = 100 n = 200 n = 300 n = 400 n = 1000 n = 2000

p = 50 1min 2 s 2min 7 s 2min 41 s 3min 14 s 5min 44 s 8min 45 s
p = 100 2min 52 s 4min 10 s 5min 20 s 7min 22 s 8min 8 s 11min 53 s
p = 200 4min 46 s 7min 12 s 9min 19 s 13min 23 s 15min 26 s 23min 5 s
p = 400 6min 44 s 16min 10 s 20min 41 s 25min 40 s 28min 45min 9 s

4.3. Impact ofmodel misspecification on ACP algorithm

Taking linear function with cross terms as an example, Table 3 compares the results of the
Lasso methods, TVS and ACP algorithm using linear predictor and neural-network pre-
dictor, respectively. It can be seen that just like the Lasso methods and TVS, ACP using
linear predictor does not select the variables in cross terms (Recall is low), but Precision
of ACP algorithm is high, indicating that it also does not choose some irrelevant variables,
while the Lasso methods select many irrelevant ones. ACP using neural-network predic-
tor achieves simultaneously selecting true variables and screening out irrelevant ones, as
previously shown in Figure 2.

4.4. Scalability of ACP algorithm

We have run ACP algorithm on different sample sizes and input dimensions to evaluate its
scalability. The results are demonstrated in Table 4. The time complexity of ACP basically
grows linearly with the input dimension and sub-linearly with the sample size. As the sample
size and variable dimension increase, on one hand, ACP requires a more complex neural
network predictor to obtain a better estimation of the reward function; on the other hand,
the actor needs more iterations to explore different variable combinations. Therefore, for
ultra-high dimensional problems, we suggest using filtering methods (such as screening) to
quickly eliminate irrelevant variables before applying our method.

4.5. Real data analysis

We use four UCI benchmark datasets (Dua & Graff, 2017), Spambase, Communities and
Crime, Madelon and CNAE-9 to validate our proposed method. The brief descriptions of
theose datasets are summarized in Table 5.

Since the true covariates are usually unknown in the real world, we use the generalization
error to evaluate the performance of different VS methods. For the regression and classifi-
cation problems, we use the coefficient of determination (R2) and the accuracy to measure
the generalization error (calculated by 5-fold cross validation), respectively. The higher the

12 Y. LE ET AL.

Table 5. UCI datasets characteristics.

Dataset Samples Features Task

Spambase 3680 57 Binary Classification
Communities and Crime 1993 101 Regression
Madelon 2600 500 Binary Classification
CNAE-9 1080 856 Multi-Classification (9 classes)

Figure 4. Performance of the different VS methods on the four real datasets in relation to the number of
variables selected. Accuracy is used for the classification problem and R2 for the regression problem. The
metrics are both calculated by 5-fold cross validation. Each error bar is drawn by 5 independent runs, with
the dot being the mean and one standard deviation above and below.

value, the smaller the generalization error. To be fair, all VS approaches are combined with
the same end learner, a Gaussian SVM. All results are averaged over 5 independent runs.

We compare ACP with the Lasso methods, random forest, TVS, and logistic regression
with L2 norm penalty. We compare the performance of the methods when different num-
bers of variables are chosen. Both Lasso methods and logistic regression select variables in
order of coefficients from largest to smallest, random forest uses the importance scores of
the variables, TVS uses the posterior probability, and ACP is based on the value of θ for each
variable.

Figure 4 illustrates the corresponding results. Firstly, it can be seen that performing vari-
able selection does help the final prediction problem. Most of the methods achieve better
results using fewer variables. Secondly, the results of the three classification problems show
that the presence of redundant variables is likely to harm the performance of the classifier,
so appropriate variable selection has a great impact on the final classification performance.
Finally, ACP achieves the optimal performance on Spambase and CNAE-9, and performs
comparably to random forest onMadelon, to TVS on Communities and Crime. In summary,
ACP can achieve better results than other VS methods in real applications.

In addition, for Spambase and Madelon, we use the results of Table 2 in Fard et al. (2013)
and train ACP using the same settings, and compare it with the correlation-based variable
selection (CFS Hall, 2000), random forest based on Gini index (Gini-RF), and two reinforce-
ment learning-basedVSmethods, FUSE (Gaudel&Sebag, 2010) andFSTD (Fard et al., 2013).

STATISTICAL THEORY AND RELATED FIELDS 13

Table 6. The average performance of different VS methods runs 5 times independently on Spambase and
Madelon when the number of selected variables is fixed to be 20.

ACP CFS Gini-RF FUSE FSTD Baseline

Spambase
Number of selected variables 20 20 20 20 20 57
Accuracy (%) 92.10 78.53 85.48 87.11 87.19 82.93
Madelon
Number of selected variables 20 20 20 20 20 500
Accuracy (%) 85.45 78.70 84.23 85.07 86.48 58.83

Baseline is the result of using all candidate variables. Gaussian SVM classifier is used as the end learner to obtain Accuracy.

Table 6 demonstrates the results of different VS methods on Spam and Madelon when the
number of selected variables is set to 20. ACP achieves optimal performance on Spambase,
and is comparable to the best FSTD on Madelon, further validating the effectiveness of the
algorithm.

5. Discussion

In this work, we propose a general reinforcement learning framework to solve variable selec-
tion problems, called Actor-Critic-Predictor (ACP). We consider each variable to be chosen
as a probability problem. A stochastic policy is constructed and the parameters are updated
using natural policy gradient. We analyze the impact of the rewardmodelling error and opti-
mization error on the final performance from both theoretical and empirical perspectives.
Experiments show that ACP algorithm has a very wide range of applications and can handle
both regression and classification problems, and outperforms the comparedmethods inmost
scenarios.

There are several future directions to be explored. For theoretical results, we provide
an analytical framework on how different errors influence the final performance. Deeper
research is worthwhile. Also, the time complexity of ACP is relatively larger than traditional
methods, most of which are due to the training of neural networks. Therefore, it is worth-
while to further study how to balance the accuracy of reward and computational efficiency
in practical applications, and whether a reward function can be designed so that it can satisfy
both accuracy and computational efficiency.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This work was partially supported by the National Natural Science Foundation of China [grant
numbers 12401387, 11771268, 12001356], the Fujian Alliance of Mathematics [grand number
2024SXLMQN01] and the Talent Fund Project of Fuzhou University [grand number XRC-24048].

ORCID

Yang Bai http://orcid.org/0000-0002-4660-4542

http://orcid.org/0000-0002-4660-4542

14 Y. LE ET AL.

References

Agarwal, A., Kakade, S. M., Lee, J. D., &Mahajan, G. (2021). On the theory of policy gradient methods:
Optimality, approximation, and distribution shift. Journal of Machine Learning Research, 22(98),
1–76.

Bach, F. (2008). Exploring large feature spaces with hierarchical multiple kernel learning. Advances in
Neural Information Processing Systems, 21, 105–112.

Barbu, A., She, Y., Ding, L., & Gramajo, G. (2016). Feature selection with annealing for computer
vision and big data learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(2),
272–286. https://doi.org/10.1109/TPAMI.2016.2544315

Battiti, R. (1994). Using mutual information for selecting features in supervised neural net learning.
IEEE Transactions on Neural Networks, 5(4), 537–550. https://doi.org/10.1109/72.298224

Bickel, P. J., Ritov, Y., & Tsybakov, A. B. (2009). Simultaneous analysis of Lasso and Dantzig selector.
The Annals of Statistics, 37(4), 1705–1732. https://doi.org/10.1214/08-AOS620

Boullé, M. (2007). Compression-based averaging of selective naive Bayes classifiers. The Journal of
Machine Learning Research, 8, 1659–1685.

Breiman, L. (2001). Random forests.Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933
404324

Cai,D., Zhang, C., &He,X. (2010).Unsupervised feature selection formulti-cluster data. InProceedings
of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp.
333–342).

Chen, J., Stern, M., Wainwright, M. J., & Jordan, M. I. (2017). Kernel feature selection via conditional
covariance minimization. Advances in Neural Information Processing Systems, 30, 6949–6958.

Dua, D., & Graff, C. (2017). UCI Machine Learning Repository. Retrieved from http://archive.ics.uci.
edu/ml.

Duda, P. O., Hart, P. ., & Stork, D. G. (2000). Pattern Classification. Wiley Hoboken.
Fan, J., & Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties.

Journal of the American Statistical Association, 96(456), 1348–1360. https://doi.org/10.1198/0162145
01753382273

Fan, J., & Lv, J. (2008). Sure independence screening for ultrahigh dimensional feature space.
Journal of the Royal Statistical Society Series B: Statistical Methodology, 70(5), 849–911.
https://doi.org/10.1111/j.1467-9868.2008.00674.x

Fang, Z., Wang, J., Geng, J., & Kan, X. (2019). Feature selection for malware detection based on
reinforcement learning. IEEE Access, 7, 176177–176187. https://doi.org/10.1109/Access.6287639

Fard, S. M. H., Hamzeh, A., & Hashemi, S. (2012). A game theoretic framework for feature selection.
In 2012 9th International Conference on Fuzzy Systems and Knowledge Discovery (pp. 845–850).

Fard, S. M. H., Hamzeh, A., & Hashemi, S. (2013). Using reinforcement learning to find
an optimal set of features. Computers & Mathematics with Applications, 66(10), 1892–1904.
https://doi.org/10.1016/j.camwa.2013.06.031

Gaudel, R., & Sebag, M. (2010). Feature selection as a one-player game. In International Conference on
Machine Learning (pp. 359–366).

Gini, C. W. (1912). Variability and Mutability, Contribution to the Study of Statistical Distribution and
Relations. StudiEconomico-Giuricici Della R.

Guyon, I., Weston, J., Barnhill, S., & Vapnik, V. (2002). Gene selection for cancer classification using
support vector machines.Machine Learning, 46(1/3), 389–422. https://doi.org/10.1023/A:10124873
02797

Hall,M.A. (2000). Correlation-based feature selection for discrete andnumeric classmachine learning.
In Proceedings of the Seventeenth International Conference on Machine Learning (pp. 359–366).

He, X., Cai,D., &Niyogi, P. (2005). Laplacian score for feature selection.Advances inNeural Information
Processing Systems, 18, 507–514.

Kakade, S. M. (2001). A natural policy gradient. Advances in Neural Information Processing Systems,
14, 1531–1538.

Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization. In Y. Bengio & Y. LeCun
(Eds.), The 3rd International Conference on Learning Representations (ICLR 2015), San Diego, CA,
USA, May 7–9, 2015, Conference Track Proceedings. Retrieved from http://arxiv.org/abs/1412.6980.

https://doi.org/10.1109/TPAMI.2016.2544315
https://doi.org/10.1109/72.298224
https://doi.org/10.1214/08-AOS620
https://doi.org/10.1023/A:1010933404324
http://archive.ics.uci.edu/ml
https://doi.org/10.1198/016214501753382273
https://doi.org/10.1111/j.1467-9868.2008.00674.x
https://doi.org/10.1109/Access.6287639
https://doi.org/10.1016/j.camwa.2013.06.031
https://doi.org/10.1023/A:1012487302797
http://arxiv.org/abs/1412.6980

STATISTICAL THEORY AND RELATED FIELDS 15

Kira, K., & Rendell, L. A. (1992). A practical approach to feature selection. In Machine Learning
Proceedings 1992 (pp. 249–256). Elsevier.

Lemhadri, I., Ruan, F., Abraham, L., & Tibshirani, R. (2021). LassoNet: A neural network with feature
sparsity. Journal of Machine Learning Research, 22(127), 1–29.

Lewis, D. D. (1992). Feature selection and feature extraction for text categorization. In Speech and
Natural Language: Proceedings of a Workshop Held at Harriman, New York, February 23–26, 1992.

Lin, D., & Tang, X. (2006). Conditional infomax learning: An integrated framework for feature
extraction and fusion. In European Conference on Computer Vision (pp. 68–82).

Liu, K., Fu, Y., Wang, P., Wu, L., Bo, R., & Li, X. (2019). Automating feature subspace exploration
via multi-agent reinforcement learning. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining (pp. 207–215).

Liu, Y., & Ročková, V. (2023). Variable selection via Thompson sampling. Journal of the American
Statistical Association, 118(541), 287–304. https://doi.org/10.1080/01621459.2021.1928514

Mirzadeh, N., Ricci, F., & Bansal, M. (2005). Feature selection methods for conversational recom-
mender systems. In 2005 IEEE International Conference on e-Technology, e-Commerce and e-Service
(pp. 772–777).

Nie, F., Huang, H., Cai, X., & Ding, C. (2010). Efficient and robust feature selection via joint l2,1-norms
minimization. In Proceedings of the 23rd International Conference on Neural Information Processing
Systems-Volume 2 (pp. 1813–1821).

Nie, F., Xiang, S., Jia, Y., Zhang, C., & Yan, S. (2008). Trace ratio criterion for feature selection. InAAAI
(Vol. 2, pp. 671–676).

Peng, H., Long, F., & Ding, C. (2005). Feature selection based on mutual information criteria of
max-dependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 27(8), 1226–1238. https://doi.org/10.1109/TPAMI.2005.159

Shortreed, S.M., &Ertefaie, A. (2017).Outcome-adaptive Lasso: Variable selection for causal inference.
Biometrics, 73(4), 1111–1122. https://doi.org/10.1111/biom.12679

Sutton, R. S. (1988). Learning to predict by the methods of temporal differences. Machine Learning,
3(1), 9–44.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement Learning: An Introduction. MIT Press.
Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical

Society Series B: Statistical Methodology, 58(1), 267–288. https://doi.org/10.1111/j.2517-6161.1996.
tb02080.x

Varma, M., & Babu, B. R. (2009). More generality in efficient multiple kernel learning. In Proceedings
of the 26th Annual International Conference on Machine Learning (pp. 1065–1072).

Vidal-Naquet, M., & Ullman, S. (2003). Object recognition with informative features and linear
classification. In ICCV (Vol. 3, p. 281).

Yang, H., &Moody, J. (1999). Data visualization and feature selection: New algorithms for nongaussian
data. In Advances in Neural Information Processing Systems (Vol. 12).

Yarotsky, D. (2017). Error bounds for approximations with deep ReLU networks.Neural Networks, 94,
103–114. https://doi.org/10.1016/j.neunet.2017.07.002

Zhang, C. (2010). Nearly unbiased variable selection under minimax concave penalty. The Annals of
Statistics, 38(2), 894–942. https://doi.org/10.1214/09-AOS729

Zhang, T. (2011). Adaptive forward-backward greedy algorithm for learning sparse representations.
IEEE Transactions on Information Theory, 57(7), 4689–4708. https://doi.org/10.1109/TIT.2011.214
6690

Zhao, Z., & Liu, H. (2007). Spectral feature selection for supervised and unsupervised learning. In
Proceedings of the 24th International Conference on Machine Learning (pp. 1151–1157).

Appendices

Appendix 1. Proof of Proposition 3.1

We first introduce two important lemmas, which quantify the performance difference from two
different perspectives: reward modelling error and policy inconsistency.

https://doi.org/10.1080/01621459.2021.1928514
https://doi.org/10.1109/TPAMI.2005.159
https://doi.org/10.1111/biom.12679
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1016/j.neunet.2017.07.002
https://doi.org/10.1214/09-AOS729
https://doi.org/10.1109/TIT.2011.2146690

16 Y. LE ET AL.

Lemma A.1 (Performance difference due to model error): Let r denote the true reward function and
r̂ denote the its estimate obtained by the predictor. Let ρr(π̂) and ρr̂(π

∗) denote their objective functions
respectively. Then for any given policy π , we have

|ρr̂(π) − ρr(π)| ≤ ‖r̂ − r‖∞.

Proof of Lemma A.1.:

|ρr̂(π) − ρr(π)| = ∣∣Ea[r̂a − ra]
∣∣

≤ max
a

|r̂a − ra| = ‖r̂ − r‖∞.

�

LemmaA.2 (Performance difference due to policy inconsistency): If there are two polices π1 and π2,
let ρr(π1) and ρr(π2) denote their objective functions respectively. Further assume the reward function
satisfies ||r||∞ ≤ R. Then we have

|ρr(π1) − ρr(π2)| ≤ 2R · DTV(π1‖π2),

where DTV(·‖·) is the total variation difference of two distributions. DTV(π1‖π2) = supa |π1(a) −
π2(a)|.

Proof of Lemma A.2.: Firstly introduce a useful inequality: let f (x) be a real bounded function that is
f (x) ∈ [−fmax, fmax], 0 ≤ fmax < ∞. Let P1(x) and P2(x) denote two probability distributions overX ,
and then we have

|EP1 [f (x)] − EP2 [f (x)]| ≤ 2fmaxDTV(P1‖P2).
Next,

|ρr(π1) − ρr(π2)| =
∣∣∣∣∣
∑
a

π1(a)ra −
∑
a

π2(a)ra
∣∣∣∣∣

= ∣∣Ea∼π1 [r
a] − Ea∼π2 [r

a]
∣∣ ≤ 2RDTV(π1 | π2).

�

Based on these two lemmas, we now can prove our main theoretical result (Proposition 3.1).

Proof of Proposition 3.1.:

ρr(π̂) − ρr(π
∗) = ρr(π̂) − ρr̂(π

∗) + ρr̂(π
∗) − ρr(π

∗)
≥ ρr(π̂) − ρr̂(π̂

∗) + ρr̂(π
∗) − ρr(π

∗)
= ρr(π̂) − ρr̂(π̂) + ρr̂(π̂) − ρr̂(π̂

∗) + ρr̂(π
∗) − ρr(π

∗)
≥ −2Rεopt − 2εmod

The first greater than uses the definition of π̂∗. �

Appendix 2. Algorithm implementation details andmore experimental results

Our implementation is mainly based on Numpy, Pytorch and scikit-learn. The Architecture of the
predictor is a two-layer neural network, where the output layer is designed differently according to dif-
ferent problems.We usemean square error for regression problems and cross-entropy for classification
problems as the generalization error. For convenience, we just use MLPRegressor and MLPCLassifier
in scikit-learn, which is also faster than Pytorch implementation on CPU. We use Adam (Kingma
& Ba, 2015) to optimize the actor and predictor. We have a max iteration step for training the actor,
and in the meantime, we set a stopping criterion in case the algorithm converges early. When the L2
norm of the difference ofw in two consecutive steps is less than a threshold, we consider the algorithm

https://github.com/numpy
https://github.com/pytorch
https://github.com/scikit-learn
https://github.com/scikit-learn

STATISTICAL THEORY AND RELATED FIELDS 17

Algorithm 1 Compute the reward function r̂a corresponding to the action a.
Require:
1: split the data into training set {(xi, yi)}n1i=1 and validation set {(xi, yi)}n2i=1.
2: solve the optimization problem f̂a = argminf 1

n1

∑n1
i=1[l(yi, f (x

a
i))].

3: compute the reward function r̂a = − 1
n2

∑n2
j=1 l(yj, f̂a(x

a
j)).

4: return a, r̂a and ∇θ logπθ (a).

Algorithm 2 Actor-Critic-Predictor Algorithm.
Require: {xi, yi}ni=1, policy parameters θ , batch size B, penalty parameter for ridge regres-

sion γ , coefficient of exponentially weighted moving average α, maximum number of
iterationsM, a small probability quantity e = 0.02.

1: initialize θ (0), where θ
(0)
j = 0.5, j = 1, . . . , p. rbaseline = 0.

2: form = 0, 1, . . . ,M − 1 do
3: for b = 1, . . . ,B do
4: sample action ab from policy πθ .
5: implement Algorithm 1 to get r̂b,∇θ logπθ (ab).
6: end for
7: Based on {ab, r̂b,∇θ logπθ (ab)}Bb=1,
8: update the baseline: rbaseline = (1 − α)rbaseline + α 1

B
∑

b r̂b.
9: w(m) = argminw 1

B
∑B

b=1[w
�∇θ logπθ (ab) − (r̂b − rbaseline)]2 + γw�w.

10: θ (m+1) = θ (m) + w(m).
11: clip θ (m+1) to [e, 1 − e].
12: if convergence conditions are met, then
13: break
14: end if
15: end for
Ensure: θ (m).

Table A1. Default values of hyperparameters used in
experiments.

Parameter Value

Number of neurons for hidden layer 128
Initial learning rate for predictor 1e-2
Max iteration step for actor 500
Max training epoch for predictor 1000
Moving average weight for baseline 0.95
Batch size 64
Validation set ratio 0.3
Threshold for final output 0.9
Norm difference ofw for convergence 1e-3
Depth of a tree for random forest 5
‘gamma’ for SVM with rbf kernel ‘auto’

to converge and stop it. For other methods (Lasso, Logistic regression, random forest and Gaussian
SVM) used in this paper, we implement them based on scikit-learn.

All hyperparameters used in experiments are summarized in Table A1.

https://github.com/scikit-learn

18 Y. LE ET AL.

A.1 Linear functionwith independent covariates

Table A2. Results of ACP algorithm and other VSmethods on linear functions with independent variables
under different sample sizes.

ACP Lasso_AIC Lasso_BIC Lasso_CV Random Forest TVS

n = 100
Accuracy 0.998± 0.003 0.992± 0.007 0.996± 0.004 0.883± 0.062 0.823± 0.024 0.998± 0.002
Precision 0.945± 0.084 0.797± 0.131 0.875± 0.103 0.218± 0.085 0.130± 0.016 1.000± 0.000
Recall 0.975± 0.061 1.000± 0.000 1.000± 0.000 1.000± 0.000 0.968± 0.060 0.917± 0.092
F1 score 0.957± 0.058 0.881± 0.085 0.930± 0.060 0.350± 0.111 0.228± 0.025 0.954± 0.053
n = 200
Accuracy 1.000± 0.001 0.999± 0.001 0.999± 0.001 0.959± 0.020 0.812± 0.020 1.000± 0
Precision 0.982± 0.041 0.867± 0.102 0.947± 0.073 0.193± 0.081 0.041± 0.004 1.000± 0
Recall 0.980± 0.046 1.000± 0.000 1.000± 0.000 1.000± 0.000 1.000± 0.000 1.000± 0
F1 score 0.980± 0.032 0.926± 0.060 0.971± 0.041 0.316± 0.109 0.079± 0.007 1.000± 0

p = 300, d = 8, and n = {100, 200}. The variable selection performance is evaluated by Accuracy, Precision, Recall and F1
score. The form represents mean± std.

Figure A1. Results of ACP algorithmandother VSmethods on linear functionswith independent variables
under different sample sizes. p = 50, d = 8, and n = {100, 200, 300, 400}. The variable selection perfor-
mance is evaluated by Accuracy, Precision, Recall and F1 score. Each error bar is drawn by 50 independent
runs, with the dot being the mean and one standard deviation above and below.

	1. Introduction
	2. Reinforced variable selection
	2.1. Variable selection as multi-armed bandit
	2.2. Policy

	3. The Actor-Critic-Predictor algorithm
	3.1. Algorithm implementation
	3.2. Predictor for reward

	4. Numerical experiments
	4.1. The ACP algorithm using neural-network predictor
	4.2. The ACP algorithm using linear predictor
	4.3. Impact of model misspecification on ACP algorithm
	4.4. Scalability of ACP algorithm
	4.5. Real data analysis

	5. Discussion
	Disclosure statement
	Funding
	ORCID
	References
	Appendices
	Appendix 1. Proof of Proposition 3.1
	Appendix 2. Algorithm implementation details and more experimental results
	A.1. Linear function with independent covariates

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [595.276 841.890]
>> setpagedevice

