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ABSTRACT
Remaining Useful Life (RUL) is one of the most important indicators to
detect a component failure. RUL can be predicted by historical data
by adopting a model-based method. The stochastic process models
have become the most popular way to model degradation data for
high-quality products, such as the Wiener process, gamma process
and inverse Gaussian process. However, this leads to poor reliability
assessment if the model is misspecified. Application of the Tweedie
exponential dispersion (TED) process, including the above-mentioned
classical stochastic processes as special cases, transforms the model
selection problem into a parameter estimation problem dexterously. In
this paper, we propose a TED process with random drifts for degrada-
tion data and a TEDprocesswith randomdrifts and covariates for accel-
erated degradation data. A hierarchical Bayesian method is adopted
to estimate the parameters of the proposed models. We also derive
the failure-time distribution and the remaining useful life distribution
for the proposed models. The simulation study shows that the pro-
posed model outperforms the wrongly specified models. Two illus-
trative examples demonstrate the performance of the proposed TED
process with randomdrifts and the TED process with randomdrifts and
covariates.
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1. Introduction

To assess the reliability of the newly designed products, manufacturers often design the
degradation test (DT) or the accelerated degradation test (ADT) to shorten the testing time by
loading higher stress than normal use condition, such as a combination of random vibration,
higher temperature, voltage, humidity and pressure. To hasten the degradation, the ADTs are
used under severe stress to quickly obtain the degradation information. The obtained DT or
ADT data facilitates the reliability inference for highly reliable products. For an overview of
research in this area, see Limon et al. (2017) and Meeker et al. (1998) for details. In DT or
ADT, the failure of a product is often determined by one ormore quality characteristics (QC).
The degradation of this QC accumulates over time and induces a failure when it exceeds a
predefined threshold. This threshold combines the product degradation and reliability (Ye
et al., 2014).
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There are two classes of models for DT and ADT data: the general path models (dos San-
tos & Colosimo, 2015; Lu & Meeker, 1993; Shat, 2024) and stochastic process models (Bae
et al., 2007; Lim&Yum, 2011;Meeker et al., 1998; Shi&Meeker, 2011). Ye andXie (2015) have
given an excellent review on this area. TheWiener process, gamma process and inverse Gaus-
sian (IG) process are three popular stochastic models to analyse degradation data. Although
they have received intensive applications in degradation data analysis, it is hard to suggest
an appropriate stochastic model for a specific dataset. Recently, Tseng and Lee (2016) pro-
posed the exponential-dispersion (ED) process to fit the degradation paths, which includes
the Wiener process, gamma process and IG process as special cases. They mainly focused
on the optimum allocation problem in ADT. Zhou and Xu (2019) developed the statistical
inference for the parameter estimation method for TED process. Chen et al. (2019) used the
TED process to predict the remaining useful life (RUL) of products and design ADTs. Luo
et al. (2022) derived the system reliability, in which the degradation path for each component
is assumed to follow an ED process.

However, there exists unit-to-unit variability in the degradation paths, because of the
operation environment, initial variation in raw materials and manufacturing processes or
product heterogeneity. There is a significant body of literature studying the heterogeneity by
introducing the random effects into the degradation model. Wang (2010) gave rise to the
maximum likelihood inference on a class ofWiener processes with random effects for degra-
dation data. Lawless and Crowder (2004) incorporated the covariates and random effects to
gamma process. Wang (2008) investigated a semi-parametric pseudo-likelihood inference
for nonhomogeneous gamma process with random effects for degradation data. Peng (2015)
proposed a degradation model based on an inverse normal-gamma mixture of the IG pro-
cess. Fang et al. (2022) studied a novel multivariate degradation model based on the inverse
Gaussian process. As for the ED degradation process, Duan andWang (2018) further gener-
alized ED with random dispersion parameters and covariates, in which the EM algorithm is
developed to obtain the maximum likelihood estimation and Birnbaum–Saunder distribu-
tion is used to approximate the life-time distributions. However, the dispersion parameters
only affect the variance of the increment instead of the mean. Chen et al. (2021) proposed
the TED process with both random drifts and dispersions and adopted the variational infer-
ence for parameter inference. The TED is a generalized stochastic process that includes the
Wiener, gamma, and IG processes as its special cases. The TED process has independent
increments, which are characterized by the TED distribution in Jørgensen (1997).

From the results of these studies, we can find that the TED process is more flexible than
other processes since it incorporates the classical stochastic processes as special cases, by
which themodel selection problem turns into the parameter estimation problemdexterously.
We also find that incorporating random effects into the TED models can achieve better per-
formance in degradation modelling. For TED process with random effects, most statistical
inferences for parameter estimation are based on the EM algorithm or variational inference.
However, these methods are usually of great complexity and cannot provide the estimation
results for random effect parameters. In this paper, we propose a TED model with random
drifts for degradation data and a TED model with both random drifts and covariates for
accelerated degradation data, respectively. The hierarchical Bayesian method is adopted to
estimate the parameters, which can bring about the shrinkage of the random effects in that
they share a commondistribution and provide the posterior estimation of the random effects.

The rest of this paper is organized as follows. In Section 2. we introduce some basic prop-
erties of the TED process and its approximation method. Sections 3 and 4 give rise to the
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TED process with random drifts and TED process with both random drifts and covariates
alongwith their corresponding posterior inference algorithms and the distributions of failure
time and remaining useful life (RUL). In Section 5, a simulation study is conducted to show
the performance and superiority of the proposed models under mis-specification situations.
In Section 6, the GaAs laser data and stress relaxation data examples are used to illustrate the
validity of the proposed models. Finally, we conclude our findings in Section 7.

2. ED process and its approximation

2.1. ED process

Let Y(t) be the degradation characteristics at measurement time t and it can be modelled as
an ED process, which has the following properties: (1) Y(0) = 0; (2) {Y(t) | t ≥ 0} has sta-
tionary and independent increments, i.e., �Y = Y(t +�t)− Y(t) follows ED distribution
ED(μ�t, λ) with probability density function (PDF)

f (�y |μ, λ,�t) = c(�y | λ,�t) exp{λ[�yθ −�tκ(θ)]},

where c(·) is the canonical function and κ(·) is the cumulant function, satisfyingμ = κ ′(θ).μ
is the drift parameter and λ is the dispersion parameter. According to themoment generating
function (MGF) for�Y , we can obtain the expectation and variance. The MGF is derived as

M�Y(s) = E
[
es�y] = ∫ es�yc(�y | λ,�t) exp{λ[�yθ −�tκ(θ)]}d�y

= exp
{
λ�t

[
κ
(
θ + s

λ

)
− κ(θ)

]}
. (1)

Then the expectation can be derived as E(�y |μ, λ,�t) = dM�Y (s)
ds |s=0 = �tκ ′(θ) = μ�t;

the variance can be derived as Var(�y |μ, λ,�t) = E(�y2 |μ, λ,�t)− [E(�y |μ, λ,�t)]2

= d2M�Y (s)
d2s |s=0 −�t2κ ′(θ)2 = �t2κ ′(θ)2 + �t

λ κ
′′(θ)−�t2κ ′(θ)2 = �t

λ κ
′′(θ) = �tV(μ)

λ ,
where V(μ) = κ ′′(θ) is called the variance function.

An important family of ED process is proposed by Jørgensen (1997) withV(μ) = μp, p ∈
(−∞, 0] ∪ [1,∞). This family of ED process is called the Tweedie ED (TED) process. The
commonly used stochastic processes are special cases of TED process, such as the Wiener
process (p = 0), the gamma process (p = 2), the inverse Gaussian process (p = 3), the Pois-
son process (p = 1) and the compound Poisson process (1<p<2). Besides the Wiener
process, the parameterμ controls both the expectation and partially the variation in the data.
The distribution, expectation and variance of the increment for different processes are given
in Table 1.

2.2. Saddlepoint approximation

Although the TED process can be used as a general stochastic process to model the degrada-
tion data, a significant challenge is that the canonical function c(·) and the cumulant function
k(·) have no closed-form expressions. However, Jørgensen (1986, 1997) adopted the saddle-
point approximation (Daniels, 1954) method to approximate the PDF of the Tweedie ED
distribution. The approximation results are given in the following lemma.
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Table 1. The distribution, expectation and variance of the increment for different processes.

Process Distribution of the increment p Expectation Variance

ED process ED(μ�t, λ), V(μ) = μp – μ�t μp�t
λ

Wiener process N (μ�t, t/λ) 0 μ�t �t
λ

gamma process Gamma(λ�t,μ/λ) 2 μ�t μ2�t
λ

inverse Gaussian process IG(μ�t, λ�t2) 3 μ�t μ3�t
λ

Poisson process Poisson(μ�t), λ = 1 1 μ�t μ�t

Lemma 2.1. The PDF of the degradation increment of the TED process can be approximated
using saddlepoint approximation method as follows:

f (�y |μ, λ, p,�t) ∼=
√

λ

2π�t1−pyp
exp

[
−λ�t

2
d
(
�y
�t

;μ, p
)]

,

where

d
(
�y
�t

;μ, p
)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
�y
�t
− μ

)2
, p = 0,

2
[
�y
�t

log
(
�y
μ�t

)
− �y
�t
+ μ

]
, p = 1,

2
[
log

(
μ�t
�y

)
+ �y
μ�t
− 1

]
, p = 2,

2

⎡
⎢⎣

(
�y
�t

)2−p
(1− p)(2− p)

−
�y
�tμ

1−p

1− p
+ μ2−p

2− p

⎤
⎥⎦ , p �= 0, 1 or 2.

(2)

The accuracy of the approximation has been discussed in some literature: (1) for p = 0, 3,
the approximated results are the exact distributions of the TED model; (2) for p �= 0, 3, the
approximated results are accurate (Duan &Wang, 2018; Dunn & Smyth, 2008). As shown in
Table 1, for p = 1 and p = 2, the TED process reduces to the Poisson and gamma processes.

3. TED process with random drifts

3.1. Model

Denote the degradation observations as Yi,1, . . . ,Yi,mi at times 0 < ti,1 < · · · < ti,mi , where
i = 1, . . . , n andmi is the number of inspection measurements for the ith item. Considering
the unit-to-unit variability, we assume that there are different degradation drift parameters
for each path. Based on this specification, the degradation increment�Yi,j ≡ Yi,j+1 − Yi,j on
the time interval�ti,j(≡ ti,j+1 − ti,j) follows ED(μi, λ, p) with approximated PDF

f�Yi,j(�yi,j |μi, λ, p,�ti,j) =
√√√√ λ

2π�t1−pi,j �ypi,j
exp

[
−λ�ti,j

2
d
(
�yi,j
�ti,j

;μi, p
)]

, (3)
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and d(�yi,j
�ti,j ;μi, p) is

d
(
�yi,j
�ti,j

;μi, p
)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
�yi,j
�ti,j
− μi

)2
, p = 0,

2
[
�yi,j
�ti,j

log
(
�yi,j
μi�ti,j

)
− �yi,j
�ti,j
+ μi

]
, p = 1,

2
[
log

(
μi�ti,j
�yi,j

)
+ �yi,j
μi�ti,j

− 1
]
, p = 2,

2

⎡
⎢⎣

(
�yi,j
�ti,j

)2−p
(1− p)(2− p)

−
�yi,j
�ti,j μ

1−p
i

1− p
+ μ

2−p
i

2− p

⎤
⎥⎦ , p �= 0, 1 or 2.

(4)

For real data analysis, we can discuss the results for these four scenarios by model selection
methods. Thus, without loss of generality, we use the fourth scenario (p �= 0, 1 or 2) for sta-
tistical inference. Based on the derivation above, the joint density of random increment of
�Y ≡ (�Y1, . . . ,�Yn)


 with �Yi ≡ (�Yi,1, . . . ,�Yi,mi)

 is

f�Y(�y |μ, λ, p) =
n∏
i=1

mi−1∏
j=1

f�Yi,j(�yi,j |μi, λ, p,�ti,j), (5)

where �y ≡ (�y1, . . . ,�yn)
, �yi ≡ (�yi,1, . . . ,�yi,mi)

 and μ ≡ (μ1, . . . ,μn)


.

3.2. Prior specification

The hierarchical Bayesian approach can flexibly and effectively estimate the model parame-
ters with random effects, which specifies a common distribution for the unit-specific random
parameters. The similarities of the data bring about the correlations of drift parameters for
each items. To be specific, the prior distributions are specified as follows.

(1) The drift parameters μi are assumed to follow a normal distribution with mean η and
variance σ 2; that is, π(μi) ∼ N (η, σ 2), whereN (·) denotes a normal distribution.

(2) For (η, σ 2)
, we consider the normal-inverse gamma distributions (Bernardo
& Smith, 1994) NIG(λμ, ημ, νμ, ξμ) with hyperparameter vector (0.0001, 10, 0.0001,
0.0001), which is low informative prior.

(3) Assign a gamma distribution Gamma(α,β) with α = β = 0.0001 to λ.
(4) The normal distribution is assigned to p ∼ N (γ , δ2).

3.3. Posterior distributions and Gibbs algorithm

After specifying the model and prior distributions, the posterior distributions can be derived
according to the Bayes’ theorem. Let � ≡ (μ, η, σ 2, λ, p)
 denote the set of the parameter
vector in the hierarchical Bayesian EDmodel. The resulting joint posterior distribution of�
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is

π(� | y) ∝ π(η, σ 2 | λμ, ημ, νμ, ξμ)π(λ |α,β)π(p | γ , δ2)π(μ | η, σ 2)f�Y(�y |μ, η, σ 2, λ, p)

∝ (σ 2)−(1/2+νμ+1) exp
{
−2ξμ + λμ(η − ημ)

2

2σ 2

}
λα−1 exp(−βλ)

× exp
{
− (p− γ )

2

2δ2

} n∏
i=1

1
σ
exp

{
− (μi − η)2

2σ 2

}mi−1∏
j=1

√√√√ λ

2π�t1−pi,j �ypi,j

× exp
[
−λ�ti,j

2
d
(
�yi,j
�ti,j

;μi, p
)]

. (6)

TheMetropolis Hasting within Gibbs sampler (MHGS) shown in Algorithm 1 can be imple-
mented to generate posterior samples of parameters with their full conditional posterior
distributions given in Appendix A. Specifically, the parameters in � except p and μi have
full conditional distributions of closed-form, and thus they can be updated directly. For p
and μi, i = 1, . . . , n, the MH algorithm can be used to obtain their posterior samples.

3.4. Failure-time distribution and RUL distribution

The failure-time T is defined as the first hitting time at which the degradation path passes
the predefined threshold Df , i.e., T = {t |Y(t) ≥ Df ,Y(0) < Df }. Hong and Ye (2017) have
obtained that the failure-time distribution for a process with drift μ and volatility σ can
be approximated by a Birnbaum–Saunders (BS) distribution (Balakrishnan & Kundu, 2019)
BS( σ√

μDf
, Df
μ ). The failure-time distribution and RUL distribution for our proposed TED

process with random drifts are given in the following two theorems.

Theorem3.1. If the degradation path Yi(t) follows the TED process defined in Section 3.1, then

the cumulative distribution function (CDF) of the failure-time E[Ti] = μ
p−2
i
2λ +

Df
μi

Proof: According to the results obtained byHong and Ye (2017), the ED degradation process

{Yi(t) | t ≥ 0} has drift parameter μi and volatility parameter ϑ = μ
p
2
i

λ
1
2
. The lifetime Ti can

be approached by the BS distribution with CDF

FTi(t) ∼= �
(
μi
√
t

ϑ
− Df√

tϑ

)
.

By replacing ϑ = μ
p
2
i

λ
1
2
, we obtain

FTi(t) ∼= �
⎡
⎣ λ 1

2

μ
p
2
i

(
μi
√
t − Df

t

)⎤⎦ .
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Algorithm 1:MHGS algorithm for TED process with random drifts.
input : The number of MHGS iteration times T, proposal parameter sθ ,

MH algorithm iteration times N, and the initial value
�(0)← (μ(0), η(0), σ 2(0), λ(0), p(0)).

output: The posterior sample of �.

for t← 1 to T do
Draw (η(t), σ 2(t)) fromNIG(λ′μ(t−1), η′μ(t−1), ν′μ(t−1), ξ ′μ(t−1)), where
λ′μ

(t−1) = λμ + n, η′μ
(t−1) = (λμημ +∑n

i=1 μ
(t−1)
i )/(λμ + n),

ν′μ
(t−1) = n/2+ νμ, and ξ ′μ(t−1) = ξμ + λμη2μ/2+∑n
i=1 μ

(t−1)
i

2
/2− (λμημ +∑n

i=1 μ
(t−1)
i )2/(2(λμ + n)) ;

Draw λ(t) from
Gamma(α +

∑n
i=1mi−n

2 ,β +∑n
i=1
∑mi−1

j=1
�ti,j
2 d(�yi,j

�ti,j ;μ
(t−1)
i , p(t−1)));

pcur← p(t−1)for g ← 1 to N do
Proposed p′ fromN (pcur, spθ );
Calculatelogα = log π(p′|μ(t−1),η(t),σ 2(t),λ(t),�y)

π(pcur|μ(t−1),η(t),σ 2(t),λ(t),�y) ;
Draw u from U(0, 1);
if log u < logα then pcur← p′;

end
p(t)← pcurfor i← 1 to n do
μcur
i ← μ

(t−1)
i for g ← 1 to N do

Proposed μ′i ∼ N(μcur
i , sμθ );

Calculatelogα =
log π(μ

′
i|μ(t)1 ,...,μ(t)i−1,μ

(t−1)
i+1 ,...,μ(t−1)n ,η(t),σ 2(t)),λ(t),p(t),�y)

π(μcur
i |μ(t)1 ,...,μ(t)i−1,μ

(t−1)
i+1 ,...,μ(t−1)n η,σ 2(t),λ(t),p(t),�y)

;

Draw u from U(0, 1);
if log u < logα then μcur

i ← μ′i;
end
μ
(t)
i ← μcur

i
end
�(t)← (μ(t), η(t), σ 2(t), λ(t), p(t))
.

end

For the two-parameter BS(ς ,ψ) (Balakrishnan & Kundu, 2019), the CDF can be written as

�

[
1
ς

{(
t
ψ

)1/2
−
(
ψ

t

)1/2
}]

.
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Thus, we have ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
ςψ1/2 =

λ1/2

μ
p/2−1
i

,

ψ1/2

ς
= λ1/2Df

μ
p/2
i

.
(7)

By solving the equations above, we have

ς = μ
p−1
2

i√
λDf

,ψ = Df

μi
. (8)

Then we obtain T ∼ BS
(
μ

p−1
2

i√
λDf

, Df
μi

)
. According to the results given by Balakrishnan

and Kundu (2019), the expectation of the BS(ς ,ψ) is

E(Ti) = ψ

2
(ς2 + 2) = Df

2μi

(
μ
p−1
i
λDf
+ 2

)
= μ

p−2
i
2λ
+ Df

μi
.

�

Theorem 3.2. Define the RUL, Rit, of the ith unit at time t as Rit = inf{rit > 0 |Yi(t +
rit) ≥ Df ,Yi(t) < Df }, and then Rit ∼ BS

(
μ

p−1
2

i√
λ(Df−Yi(t)) ;

Df−Yi(t)
μi

)
and the mean residual

life (MRL) function for the ith unit E[Rit] = μ
p−2
i
2λ +

Df−Yi(t)
μi

.

The proof of Theorem 3.2 can be easily obtained analogy to Theorem 3.1.

4. TED process with random drifts and covariates

4.1. Model

In this section, we consider the accelerated ED degradation model with random drifts and
covariates. Assume that there are K stress levels, Sk

Considering the unit-to-unit variability, we assume that there is different degradation drift
parameter for each path. Based on this specification, the degradation increments �Yk,i,j ≡
Yk,i,j+1 − Yk,i,j on the time interval �tk,i,j(≡ tk,i,j+1 − tk,i,j) follow ED(μki, λ, p). Then the
PDF of�Yk,i,j can be written as follows:

f�Yk,i,j(�yk,i,j |μki, λ, p,�tk,i,j) =
√√√√ λ

2π�t1−pk,i,j �ypk,i,j
exp

[
−λ�tk,i,j

2
d
(
�yk,i,j
�tk,i,j

;μki, p
)]

,

(9)
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and d(�yk,i,j
�tk,i,j

;μki, p) is

d
(
�yk,i,j
�tk,i,j

;μki, p
)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
�yk,i,j
�tk,i,j

− μki

)2
, p = 0,

2
[
�yk,i,j
�tk,i,j

log
(
�yk,i,j
μ�tk,i,j

)
− �yk,i,j
�tk,i,j

+ μki

]
, p = 1,

2
[
log

(
μki�tk,i,j
�yk,i,j

)
+ �yk,i,j
μki�tk,i,j

− 1
]
, p = 2,

2

⎡
⎢⎣

(
�yk,i,j
�tk,i,j

)2−p
(1− p)(2− p)

−
�yk,i,j
�tk,i,j

μ
1−p
ki

1− p
+ μ

2−p
ki

2− p

⎤
⎥⎦ , p �= 0, 1 or 2.

(10)

Based on the derivation above, the joint density of random increment of �Y ≡
(�Y1 . . . ,�YK)


 for �Yk ≡ (�Yk,1,1, . . . ,�Yk,1,mk , . . . ,�Yk,nk,1, . . . ,�Yk,nk,mk)

 is

f�Y(�y |μ, λ, p) =
K∏

k=1

nk∏
i=1

mk∏
j=1

f�Yk,i,j(�yk,i,j |μki, λ, p,�tk,i,j), (11)

for �y ≡ (�y1, . . . ,�yK)
, where �yk ≡ (�yk,1,1, . . . ,�yk,1,mk , . . ., �yk,nk,1, . . . ,�
yk,nk,mk)


 and μ = (μ1, . . . ,μK), μk = (μk1, . . . ,μknk).

4.2. Prior specification

Analogous to the prior specification for ED models with random drifts, we also assume that
the drift parameters are random and follow the same distribution for each path under the
same stress level. To be specific, the prior distributions are specified as follows.

(1) The drifts μki are assumed to follow a normal distribution with mean μ0 exp(β�(Sk))
and variance σ 2

k ; that is,π(μki) ∼ N (μ0 exp(β�(Sk)), σ 2
k ), k = 1, . . . ,K. σ 2

k is assumed
to follow inverse gamma distribution IG(κ , η), where κ = 2.0001, η = 1.

(2) Assign a gamma distribution Gamma(α, ξ) with α = ξ = 0.0001 to λ.
(3) The normal distribution is assigned to p ∼ N (γ , δ2).
(4) μ0 is assumed to follow N (ϑμ,φ2μ), and β is assumed to follow N (ϑβ ,φ2β) with ϑμ =

ϑβ = 0,φμ = φβ = 100.

4.3. Posterior distribution

After specifying the model and prior distributions, the posterior distributions can be derived
according to the Bayes’ theorem. Let� ≡ (μ, σ 2, λ, p,μ0,β)
 denote the set of the parame-
ter vector in the hierarchical Bayesian TED process with random drifts and covariates, where
μ = (μ1, . . . ,μK)


, μk = (μk1, . . . ,μk,nk)

 and σ 2

k = (σ 2
1 , . . . , σ

2
K)

. The resulting joint
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posterior distribution of � is

π(� | y)∝π(μ0)π(β)π(λ |α, ξ)π(p | γ , δ2)π(σ 2 | κ , η)π(μ |μ0, σ 2)f�Y(�y |μ, η, σ 2, λ, p)

∝ exp

{
− (μ0 − ϑμ)2

2φ2μ

}
exp

{
− (β − ϑβ)

2

2φ2β

}
λα−1 exp(−ξλ) exp

{
− (p− γ )

2

2δ2

}

×
K∏

k=1

[
(σ 2

k )
−(κ+1) exp

{
− η

σ 2
k

}{ nk∏
i=1

(
1
σk

exp

[
−{μki − μ0 exp(βφ(Sk))}2

2σ 2
k

]

×
mk−1∏
j=1

√√√√ λ

�t1−pk,i,j �ypk,i,j
exp

[
−λ�tk,i,j

2
d
(
�yk,i,j
�tk,i,j

;μki, p
)]⎞⎟⎠

⎫⎪⎬
⎪⎭
⎤
⎥⎦ . (12)

The MHGS shown in Algorithm 2 can be implemented to generate posterior samples
of parameters with their full conditional posterior distributions given in Appendix B.

Table 2. Truevaluesof theparameters and their correspondingAB,MSEandCPbyusing fourmodels under
three scenarios in the simulation study.

Wiener gamma IG TED

Scenario Parameter true AB MSE CP AB MSE CP AB MSE CP AB MSE CP

I (Wiener) μ1 1.720 0.089 0.012 0.940 0.101 0.016 0.990 0.141 0.026 1.000 0.089 0.013 0.940
μ2 2.082 0.073 0.009 0.970 0.063 0.007 1.000 0.054 0.005 1.000 0.073 0.009 0.970
μ3 1.626 0.098 0.015 0.890 0.120 0.022 0.970 0.169 0.037 0.990 0.100 0.016 0.890
μ4 2.713 0.102 0.016 0.930 0.189 0.042 0.990 0.292 0.089 1.000 0.106 0.017 0.940
μ5 2.147 0.080 0.010 0.970 0.066 0.007 1.000 0.053 0.004 1.000 0.079 0.009 0.980
μ6 1.633 0.101 0.015 0.900 0.128 0.022 0.990 0.179 0.039 1.000 0.103 0.015 0.920
μ7 2.218 0.077 0.009 0.970 0.067 0.007 1.000 0.059 0.005 1.000 0.076 0.009 0.990
μ8 2.330 0.100 0.016 0.900 0.095 0.014 0.990 0.104 0.015 1.000 0.099 0.016 0.920
λ 16.000 0.561 0.459 1.000 5.949 35.720 0.000 6.835 47.524 0.010 0.807 0.833 1.000

II (gamma) μ1 1.720 0.164 0.042 0.920 0.171 0.042 0.950 0.200 0.054 0.980 0.202 0.057 0.920
μ2 2.082 0.178 0.047 0.970 0.160 0.038 0.990 0.125 0.023 1.000 0.156 0.037 0.990
μ3 1.626 0.200 0.064 0.870 0.206 0.065 0.880 0.244 0.082 0.950 0.244 0.087 0.840
μ4 2.713 0.305 0.137 0.730 0.283 0.115 0.890 0.351 0.147 0.950 0.322 0.142 0.800
μ5 2.147 0.180 0.051 0.940 0.156 0.039 0.990 0.118 0.022 1.000 0.151 0.038 0.970
μ6 1.633 0.201 0.062 0.930 0.208 0.063 0.940 0.257 0.084 0.960 0.249 0.085 0.880
μ7 2.218 0.194 0.061 0.860 0.169 0.047 0.980 0.133 0.029 1.000 0.163 0.044 0.970
μ8 2.330 0.233 0.084 0.820 0.200 0.062 0.950 0.172 0.043 1.000 0.200 0.062 0.950
λ 10.000 6.603 43.876 0.000 0.504 0.427 0.990 1.528 3.169 0.690 0.712 0.731 0.970

III (IG) μ1 1.720 0.208 0.076 0.960 0.228 0.083 0.930 0.230 0.082 0.950 0.254 0.101 0.890
μ2 2.082 0.220 0.075 0.970 0.223 0.079 0.970 0.179 0.052 0.990 0.204 0.066 0.980
μ3 1.626 0.234 0.085 0.930 0.237 0.086 0.870 0.262 0.099 0.920 0.289 0.123 0.830
μ4 2.713 0.426 0.245 0.700 0.359 0.176 0.850 0.358 0.166 0.920 0.392 0.205 0.870
μ5 2.147 0.214 0.081 0.920 0.213 0.079 0.960 0.167 0.049 0.990 0.189 0.065 0.970
μ6 1.633 0.207 0.069 0.930 0.214 0.069 0.920 0.232 0.079 0.940 0.267 0.104 0.900
μ7 2.218 0.294 0.127 0.840 0.295 0.125 0.870 0.234 0.079 1.000 0.243 0.089 0.970
μ8 2.330 0.296 0.132 0.830 0.274 0.117 0.880 0.222 0.077 0.990 0.252 0.095 0.940
λ 10.000 8.194 67.425 0.000 1.956 4.175 0.210 0.583 0.515 1.000 0.738 0.757 0.970
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Specifically, the parameters β , p and μki in � have no closed-form full conditional distri-
butions, and thus they can be updated directly. To obtain the posterior samples of β , p and
μki, k = 1, . . . ,K, i = 1, . . . , nk, the MH algorithm can be used.

Algorithm 2:MHGS algorithm for TED process with both random drifts and covariates.
input : The number of MHGS iteration times T, proposal parameter sθ , MH algorithm iteration

times N, and the initial value �(0) ← (μ(0), σ 2(0), λ(0), p(0),μ(0)0 ,β(0)).
output : The posterior sample of �.
for t← 1 to T do

Draw μ(t)0 fromN ( B(t−1)A(t−1) ,
1

A(t−1) ), A
(t−1) = 1

φ2
μ
+∑K

k=1
∑nk

i=1
exp(2β(t−1)φ(Sk))

σ 2
k
(t−1) ,

B(t−1) = ϑμ
φ2
μ
+∑K

k=1
∑nk

i=1
exp(β(t−1)φ(Sk))μ(t−1)ki

σ 2
k
(t−1) ;

for k← 1 to n do
Draw σ 2(t)

k from IG(κ + nk
2 , η

(t−1) + 1
2
∑nk

i=1{μ(t−1)ki − μ(t)0 exp(β(t−1)φ(Sk))}2);
end
Draw λ(t) from
Gamma(α +

∑K
k=1 nk(mk−1)

2 , ξ +∑K
k=1

∑nk
i=1

∑mk−1
j=1

�tk,i,j
2 d(�yk,i,j

�tk,i,j ;μ
(t−1)
ki , p(t−1)));

βcur ← β(t−1);
for g ← 1 to N do

Proposed β ′ fromN (βcur, sβθ );
Calculatelogα = log π(β ′|μ(t−1) ,σ 2(t) ,λ(t) ,p(t−1) ,μ(t)0 ,�y)

π(βcur|μ(t−1) ,σ 2(t) ,λ(t) ,p(t−1) ,μ(t)0 ,�y)
;

Draw u from U(0, 1);
if log u < logα then βcur ← β ′;

end
β(t) ← βcurpcur ← p(t−1);
for g ← 1 to N do

Proposed p′ fromN (pcur, spθ );
Calculatelogα = log π(p′|μ(t−1) ,σ 2(t) ,λ(t) ,μ(t)0 ,β(t) ,�y)

π(pcur|μ(t−1) ,σ 2(t) ,λ(t) ,μ(t)0 ,β(t) ,�y)
;

Draw u from U(0, 1);
if log u < logα then pcur ← p′;

end
p(t) ← pcur;
for k← 1 to K do

for i← 1 to nk do
μcur
ki ← μ

(t−1)
ki for g ← 1 to N do

Proposed μ′ki ∼ N(μcur
ki , sμθ );

Calculatelogα = log
π(μ′ki|μ(t)11 ,...,μ(t)ki−1,μ(t−1)ki+1 ,...,μ

(t)
KnK

,σ 2(t) ,λ(t) ,p(t) ,μ(t)0 ,β(t) ,�y)

π(μcur
ki |μ(t)11 ,...,μ(t)ki−1,μ(t−1)ki+1 ,...,μ

(t)
KnK

,σ 2(t) ,λ(t) ,p(t) ,μ(t)0 ,β(t) ,�y)
;

Draw u from U(0, 1);
if log u < logα then μcur

ki ← μ′ki;
end
μ
(t)
ki ← μcur

ki
end

end
�(t) ← (μ(t), σ 2(t), λ(t), p(t),μ(t)0 ,β(t))
.

end



12 P. WANG AND Y. TANG

Figure 1. PDFsof failure-timebasedonWienerprocess, gammaprocess, IGprocess andTEDprocessmodel
and BS distribution: Upper panel is for scenario I; Middle panel is for scenario II; Lower panel is for scenario
III in the simulation study.
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4.4. Failure-time distribution and RUL distribution

Similar to Theorems 3.1 and 3.2, we can obtain the failure-time distribution and RUL distri-
bution for a TED process {Y0(t) | t ≥ 0} under usage stress. Its corresponding degradation
paths under accelerated stress are assumed to follow TED process with random drifts and
covariates.

Theorem 4.1. The failure-time T = inf{t |Y0(t) ≥ Df } for a TED process {Y0(t) | t ≥ 0}
under usage stress with its corresponding degradation paths under accelerated stress following

TEDprocess with randomdrifts and covariates defined in Section 4.1, followsBS
(
μ

p−1
2

0√
λDf

; Df
μ0

)
,

and the MTTF is E[T] = μ
p−2
0
2λ +

Df
μ0
.

Theorem 4.2. For a TED process {Y0(t) | t ≥ 0} under usage stress, corresponding degradation
paths follow TED process with random drifts and covariates under accelerated stress defined in
Section 4.1. The RUL, Rt, at time t is defined as Rt = inf{rt > 0 |Y0(t + rt) ≥ Df ,Y0(t) <

Df }, and then Rt ∼ BS( μ
p−1
2

0√
λDf

; Df−Y(t)
μ0

) and the MRL function is E[Rt] = μ
p−2
0
2λ +

Df−Y0(t)
μ0

.

Figure 2. PDFs of RUL based on Wiener process, gamma process, IG process and TED process when the
current degradations are 0, 4 and 8, respectively: Left panel is for scenario I; Middle panel is for scenario II;
Right panel is for scenario III in the simulation study.

Figure 3. The pink solid line and green dashed line are the PDFs of the RUL distribution derived based on
the estimated parameters obtained from truemodel and TED process, respectively. The black dashed line is
the MRLs based on the true parameters. Left panel is for scenario I, middle panel is for scenario II and right
panel is for scenario III in the simulation study.
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The proofs of Theorems 4.1 and 4.2 are analogous to the proof of Theorem 3.1 and are
therefore omitted.

Table 3. The MTTFs for three scenarios by using four models in the simulation study.

Unit

Scenario Model #1 #2 #3 #4 #5 #6 #7 #8

I(Wiener) Wiener 6.54 5.79 6.95 4.46 5.48 6.96 5.70 5.66
gamma 6.39 5.78 6.74 4.74 5.53 6.77 5.71 5.68
IG 6.25 5.76 6.54 5.00 5.58 6.55 5.73 5.68
TED 6.53 5.78 6.93 4.47 5.48 6.95 5.71 5.66

II(gamma) Wiener 6.82 6.97 7.70 4.31 5.89 8.35 5.54 5.17
gamma 6.59 6.73 7.45 4.59 5.81 8.17 5.52 5.23
IG 6.37 6.49 7.02 4.96 5.79 7.62 5.58 5.39
TED 6.58 6.70 7.37 4.64 5.84 8.02 5.56 5.27

III(IG) Wiener 7.12 5.36 6.44 5.24 5.97 6.77 3.60 6.08
gamma 7.16 5.36 6.37 5.25 5.91 6.73 3.99 6.01
IG 6.82 5.46 6.19 5.40 5.85 6.47 4.52 5.93
TED 6.44 5.33 5.97 5.27 5.68 6.18 4.47 5.73

Table 4. The MRLs for three scenarios by using true model and TEDP model in the simulation study.

Model Wiener gamma IG TED

Scenario Y(t) 0 4 8 0 4 8 0 4 8 0 4 8

I(Wiener) # 1 6.54 4.36 2.18 6.39 4.27 2.15 6.25 4.18 2.11 6.53 4.36 2.18
# 2 5.79 3.86 1.93 5.78 3.86 1.94 5.76 3.86 1.95 5.78 3.85 1.93
# 3 6.95 4.64 2.32 6.75 4.50 2.26 6.54 4.37 2.21 6.93 4.62 2.32
# 4 4.46 2.97 1.49 4.74 3.17 1.59 5.00 3.35 1.70 4.46 2.98 1.49
# 5 5.48 3.65 1.83 5.53 3.69 1.86 5.58 3.73 1.89 5.48 3.65 1.83
# 6 6.96 4.64 2.33 6.78 4.52 2.27 6.55 4.38 2.21 6.95 4.64 2.32
# 7 5.71 3.81 1.91 5.71 3.82 1.92 5.73 3.83 1.94 5.71 3.81 1.91
# 8 5.66 3.78 1.89 5.68 3.79 1.91 5.68 3.80 1.92 5.66 3.77 1.89

Model Wiener gamma IG TED

Y(t) 0 4 8 0 4 8 0 4 8 0 4 8

II (gamma) # 1 6.82 4.56 2.30 6.59 4.41 2.23 6.37 4.27 2.18 6.58 4.40 2.23
# 2 6.97 4.66 2.35 6.73 4.50 2.28 6.49 4.35 2.22 6.70 4.49 2.27
# 3 7.71 5.15 2.60 7.45 4.98 2.52 7.02 4.71 2.39 7.37 4.93 2.49
# 4 4.31 2.88 1.45 4.59 3.08 1.56 4.96 3.34 1.73 4.64 3.11 1.58
# 5 5.89 3.94 1.98 5.81 3.89 1.97 5.79 3.90 1.99 5.84 3.91 1.98
# 6 8.35 5.59 2.83 8.17 5.46 2.76 7.62 5.11 2.59 8.02 5.37 2.71
# 7 5.54 3.70 1.86 5.52 3.69 1.87 5.58 3.76 1.93 5.56 3.72 1.88
# 8 5.17 3.46 1.74 5.23 3.50 1.77 5.39 3.63 1.87 5.27 3.53 1.79

Model Wiener gamma IG TED

Y(t) 0 4 8 0 4 8 0 4 8 0 4 8

III (IG) # 1 7.12 4.79 2.45 7.16 4.79 2.43 6.82 4.57 2.33 6.44 4.32 2.20
# 2 5.36 3.59 1.83 5.36 3.59 1.83 5.46 3.68 1.89 5.33 3.58 1.84
# 3 6.43 4.32 2.21 6.37 4.27 2.17 6.19 4.16 2.13 5.97 4.01 2.05
# 4 5.24 3.51 1.78 5.25 3.52 1.79 5.40 3.64 1.87 5.27 3.54 1.82
# 5 5.97 4.01 2.04 5.91 3.96 2.01 5.85 3.94 2.02 5.68 3.82 1.96
# 6 6.77 4.55 2.32 6.73 4.51 2.29 6.46 4.34 2.22 6.18 4.15 2.12
# 7 3.60 2.41 1.22 3.99 2.68 1.37 4.51 3.06 1.59 4.47 3.02 1.56
# 8 6.08 4.08 2.08 6.01 4.03 2.04 5.93 3.99 2.04 5.73 3.85 1.97
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5. Simulation study

In this section, we carry out a simulation study to demonstrate the effectiveness of the TED
process with random drifts. The simulated degradation data is generated from the TED
process. The number of units is n = 8 and the number of inspection time points is n = 21.
The inspection time starts from 0 and ends to 5 with the identical inspection time interval.
The setting-ups of parameter vector (η, σ 2, λ, p) under three scenarios are, respectively, I (2,
0.2, 16, 0); II (2, 0.2, 10, 2); III (2, 0.2, 10, 3), which correspond to the Wiener process with
random drifts, gamma process with random drifts, and IG process with random drifts. For
each scenario, we adopt four models, the Wiener process with random drifts, the gamma
process with random drifts, the IG process with random drifts, and the proposed TED pro-
cess with random drifts to fit the simulated degradation data. The purpose of this simulation
study is to show the superiority of the proposed model in parameter estimation, reliability
analysis compared with other classical stochastic process with random drifts if the model is
mis-specified.

5.1. Parameter estimation

Wiener process, gamma process, IG process with random drifts are special cases of TED
process with random drifts, and we keep the same prior specification for each parameters
in these models with TED process, excluding the p parameters as it is a known constant.
For each scenario, we use the right model, TED process with random drifts, and two wrong
models to fit the simulated degradation data. According to Algorithm 1, we use the MHGS

Figure 4. The degradation paths for the GaAs laser data along with the averaged mean trend.
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algorithm to obtain the posterior sample. Actually, we use theR2Openbug package in R to call
the Openbugs software to achieve this algorithm. We first run 5000 iterations as the burn-in
period and check the convergency of theMarkov chains for each parameter by using the trace
plots, ergodic mean plots and autocorrelation plots. Then we further run 10,000 iterations to
obtain the posterior samples. The absolute bias (AB), mean square error (MSE) and coverage
probability (CP) for the drift parameters and dispersion parameter under each scenario are
computed, which are listed in Table 2.We can see that the right model always gives rise to the
best estimation results for three scenarios and TED process has almost equally well results
with the right model. However, two wrong models lead to worse results than the right model

Table 5. The posterior estimation of the drift parameters μi , disperison λ and p along with the log-
likelihood and AIC for TED process along with Wiener process, gamma process and IG process for the GaAs
data.

GaAs Wiener gamma

Parameter mean 2.5% 97.5% mean 2.5% 97.5%

#1 2.640 2.321 2.959 2.602 2.245 3.010
#2 2.282 1.968 2.599 2.288 1.966 2.652
#3 1.762 1.444 2.078 1.775 1.510 2.080
#4 1.603 1.288 1.920 1.601 1.356 1.885
#5 1.917 1.604 2.229 1.934 1.653 2.256

μ #6 2.656 2.331 2.980 2.616 2.260 3.028
#7 1.826 1.513 2.138 1.840 1.569 2.146
#8 1.624 1.305 1.943 1.626 1.378 1.910
#9 1.979 1.667 2.291 1.997 1.708 2.326
#10 2.915 2.583 3.245 2.824 2.436 3.269
#11 1.880 1.565 2.192 1.897 1.618 2.216
#12 1.979 1.664 2.294 1.998 1.710 2.326
#13 2.024 1.712 2.337 2.043 1.750 2.377
#14 1.763 1.448 2.076 1.774 1.509 2.076
#15 1.707 1.389 2.022 1.714 1.457 2.009

λ 8.645 7.120 10.300 35.160 29.360 41.480
p 0.000 2.000
log likelihood 90.365 112.331
AIC −148.731 −192.662
DIC −161.839 −204.979

IG TED

Parameter GaAs mean 2.5% 97.5% mean 2.5% 97.5%

#1 2.527 2.128 3.032 2.602 2.245 3.020
#2 2.274 1.912 2.720 2.291 1.976 2.653
#3 1.806 1.513 2.170 1.777 1.521 2.075
#4 1.633 1.369 1.965 1.603 1.366 1.877
#5 1.959 1.644 2.348 1.938 1.662 2.258

μ #6 2.533 2.135 3.036 2.613 2.257 3.027
#7 1.870 1.566 2.240 1.844 1.578 2.153
#8 1.656 1.387 1.992 1.627 1.387 1.906
#9 2.019 1.692 2.416 2.001 1.716 2.330
#10 2.688 2.267 3.232 2.818 2.426 3.274
#11 1.924 1.616 2.306 1.901 1.627 2.213
#12 2.019 1.693 2.422 2.001 1.721 2.328
#13 2.060 1.728 2.469 2.047 1.760 2.379
#14 1.806 1.515 2.167 1.778 1.519 2.079
#15 1.748 1.466 2.100 1.717 1.466 2.011

λ 48.830 43.160 54.850 40.880 35.190 47.070
p 3.000 2.158 1.838 2.489
log likelihood 103.086 115.520
AIC −174.171 −197.040
DIC −186.249 −211.737
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andTEDprocessmodel from the perspective of AB,MSE andCP. Specially, for the dispersion
parameter λ, two wrong models give outrageous estimation results.

5.2. Reliability analysis

According to Theorems 3.1 and 3.2, we derive the failure-time distribution, MTTFs, RUL
distribution, and MRLs based on the BS distribution approximation. The PDFs and CDFs
of failure-time are shown in Figures 1 and A1 in Appendix C. The PDFs and CDFs of RUL
when the current degradation values are 0, 4, 8, respectively, are shown in Figures 2 and A2.
The three-dimension PDFs and CDFs of RUL based on the true model and TED process can
be found in Figures 3 and A3. The MTTFs and MRLS can be seen in Tables 3 and 4. In view
of any aspects of reliability analysis, the proposed TED process has close performance to the
right model, while the two wrong models have worse reliability estimation results.

6. Illustrative examples

6.1. GaAs laser data

The GaAs laser data is used to illustrate the proposed TED process with random drifts. The
GaAs laser data can be found from Table C.17. in Meeker et al. (1998). The quality charac-
teristic of the GaAs laser device is its operating current. The device is considered a failure,
when the operating current reaches a predefined thresholdDf = 10. There are 15 GaAs laser

Table 6. Absolute relative changes (Ğ) in MTTF for each OLED under sensitivity analyses with respect to
the prior distribution and pseudo likelihood function.

Prior sensitivity analysis

(γ , ημ) precision #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15

(3, 10) 0.0001 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(3, 10) 0.0002 0.77 0.44 0.00 0.00 0.00 0.39 0.00 0.61 0.50 0.01 0.53 0.50 0.48 0.00 0.00
(3, 10) 0.0003 0.39 0.43 1.12 0.00 0.51 0.38 0.00 0.61 0.50 0.70 0.53 0.00 0.00 0.00 1.16
(3, 4) 0.0001 0.77 0.44 0.56 0.62 0.52 0.38 0.00 0.00 0.50 0.00 0.00 0.50 0.49 0.00 0.58
(3, 4) 0.0002 0.38 0.00 0.56 0.62 0.00 0.00 0.00 0.00 0.50 0.36 0.53 0.50 0.49 0.56 0.58
(3, 4) 0.0003 0.77 0.00 0.56 0.62 0.51 0.38 0.00 0.61 0.50 0.71 0.53 0.50 0.00 0.00 0.58
(3, 13) 0.0001 0.38 0.44 0.56 0.62 0.51 0.38 0.54 0.00 0.50 0.35 0.52 0.00 0.00 0.56 0.00
(3, 13) 0.0002 0.38 0.00 0.56 0.00 0.00 0.38 0.54 0.61 0.50 0.35 0.52 0.00 0.00 0.00 0.58
(3, 13) 0.0003 0.38 0.00 0.00 0.00 0.00 0.38 0.54 0.00 0.00 0.35 0.52 0.50 0.49 0.00 0.58
(1, 10) 0.0001 0.38 0.00 0.56 0.62 0.00 0.38 0.00 0.61 0.50 0.35 0.52 0.50 0.00 0.00 0.58
(1, 10) 0.0002 0.01 0.44 0.00 0.00 0.00 0.39 0.00 0.00 0.50 0.35 0.00 0.00 0.97 0.00 0.58
(1, 10) 0.0003 0.77 0.43 0.00 1.24 0.00 0.00 0.54 0.61 0.00 0.01 0.53 0.99 0.00 0.00 1.16
(1, 4) 0.0001 0.76 0.00 0.00 0.00 0.00 0.39 0.00 0.61 0.50 0.01 0.52 0.50 0.00 0.00 0.58
(1, 4) 0.0002 0.39 0.87 0.56 0.62 0.51 0.00 0.00 0.00 0.00 0.70 0.53 0.99 0.00 0.00 1.16
(1, 4) 0.0003 1.15 0.00 0.56 0.00 0.00 0.00 0.54 0.61 0.00 0.35 0.52 0.00 0.49 0.00 0.58
(1, 13) 0.0001 0.00 0.00 0.56 0.62 0.00 0.00 0.00 0.61 0.50 0.00 0.52 0.50 0.00 0.00 0.00
(1, 13) 0.0002 0.38 0.44 0.56 0.00 0.00 0.38 0.54 0.00 0.00 0.00 1.05 0.50 0.49 0.00 0.00
(1, 13) 0.0003 0.01 0.44 0.56 0.00 0.52 0.77 0.54 0.61 0.00 0.71 0.53 1.00 0.48 0.00 0.58
(6, 10) 0.0001 0.01 0.86 0.56 0.62 0.00 0.01 0.00 0.00 0.00 0.34 0.00 0.00 0.48 0.00 0.58
(6, 10) 0.0002 0.77 0.01 0.56 0.62 0.51 0.39 0.54 0.00 0.00 0.72 0.00 0.00 0.00 0.56 0.58
(6, 10) 0.0003 0.00 0.00 0.00 0.62 0.52 0.38 0.54 0.61 0.00 0.71 0.00 0.00 0.00 0.00 0.58
(6, 4) 0.0001 0.77 0.00 0.00 0.62 0.00 0.00 0.00 0.61 0.00 0.00 0.00 0.00 0.49 0.56 0.58
(6, 4) 0.0002 0.39 0.00 0.00 0.00 0.00 0.38 0.00 0.00 0.00 0.00 0.53 0.50 0.49 0.00 0.58
(6, 4) 0.0003 0.39 0.44 0.00 0.00 0.52 0.01 0.54 0.00 0.50 0.01 1.05 0.49 0.49 0.56 0.58
(6, 13) 0.0001 0.39 0.43 0.56 0.63 0.01 0.37 0.55 0.00 0.50 0.37 0.53 0.99 0.01 0.00 0.00
(6, 13) 0.0002 0.00 0.00 0.00 0.00 0.00 0.76 0.00 0.61 0.50 0.35 1.05 0.50 0.49 0.56 0.58
(6, 13) 0.0003 0.78 0.01 0.56 0.62 0.01 0.01 0.54 0.00 0.49 0.34 0.00 0.49 0.48 0.56 0.00
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devices tested at 80◦C. The measured frequency of its operating current is every 150 hours,
and the degradation test is terminated at 4000 hours. Figure 4 shows the degradation paths
along with the averaged degradation path for 15 tested units by transforming the time unit
to 1000 hours.

Figure 5. The PDF and CDF curves of the lifetime for each GaAs laser based on the proposed TED process.

Table 7. The MTTFs for each GaAs laser based on four models.

GaAs #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15

Wiener 3.80 4.39 5.69 6.26 5.23 3.77 5.49 6.18 5.07 3.44 5.34 5.07 4.95 5.69 5.88
gamma 3.86 4.38 5.65 6.26 5.18 3.84 5.45 6.16 5.02 3.56 5.29 5.02 4.91 5.65 5.85
IG 3.98 4.42 5.56 6.14 5.12 3.97 5.37 6.06 4.97 3.75 5.22 4.97 4.88 5.56 5.74
TED 3.86 4.38 5.64 6.25 5.17 3.84 5.44 6.16 5.01 3.56 5.27 5.01 4.90 5.64 5.84

Figure 6. The PDF and CDF of the RUL for the first GaAs laser based on TED process.



STATISTICAL THEORY AND RELATED FIELDS 19

6.1.1. Parameter estimation
The TED process with random drifts is adopted to fit the GaAs laser degradation paths. The
posterior estimation of the parameters is shown in Table 5. The estimated p in TED pro-
cess is 1.838, which is close to 2. Note that p = 2 corresponds to the gamma process. We
also find that the estimated drifts in TED process are more close to gamma process than
Wiener process and IG process. The AIC and DIC to evaluate the model are calculated as

Figure 7. The PDF and CDF of the RUL for the first GaAs laser based on Wiener process, gamma process,
inverse Gaussian process and TED process when the current degradation values equal 3, 6, 9, respectively.

Table 8. The MRLs for each GaAs laser based on four models.

Current degradation

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00

Wiener 3.80 3.42 3.04 2.66 2.28 1.90 1.52 1.14 0.77 0.39
gamma 3.86 3.47 3.09 2.70 2.32 1.94 1.55 1.17 0.78 0.40
IG 3.98 3.59 3.19 2.80 2.40 2.00 1.61 1.21 0.82 0.42
TED 3.86 3.47 3.09 2.70 2.32 1.94 1.55 1.17 0.78 0.40

Figure 8. The degradation paths for the stress relaxation data along the the averaged mean trend.
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AIC = −2 log(L)+ 2N and DIC = D+ pD, where L is the likelihood, N is the number of
parameters,D(θ) = −2L+ C is the deviance,D and pD are the average and variance ofD(θ).
Both the log-likelihood andAIC for eachmodel are also shown inTable 5. The proposedTED

Table 9. The posterior estimation of the drift parameters μi , dispersion λ and p along with the log-
likelihood and AIC for TED process along withWiener process, gamma process and IG process for the stress
relaxation data.

Wiener gamma

Parameter Unit mean 2.5% 97.5% mean 2.5% 97.5%

μ 65◦C # 1 0.291 0.143 0.432 0.286 0.463 0.879
# 2 0.319 0.175 0.462 0.326 0.476 0.881
# 3 0.344 0.204 0.490 0.360 0.507 0.910
# 4 0.351 0.210 0.498 0.369 0.406 0.930
# 5 0.372 0.230 0.523 0.394 0.646 0.948
# 6 0.309 0.164 0.450 0.313 0.648 1.002

85◦C # 7 0.500 0.348 0.639 0.505 0.567 0.666
# 8 0.501 0.350 0.640 0.506 0.553 0.668
# 9 0.553 0.409 0.694 0.214 0.575 0.704
# 10 0.541 0.397 0.681 0.248 0.624 0.728
# 11 0.559 0.416 0.701 0.277 0.441 0.744
# 12 0.608 0.469 0.757 0.286 0.429 0.798

100◦C # 13 0.837 0.647 1.013 0.306 0.449 1.113
# 14 0.840 0.651 1.016 0.238 0.495 1.113
# 15 0.880 0.699 1.058 0.381 0.715 1.146
# 16 0.911 0.733 1.093 0.382 0.698 1.175
# 17 0.938 0.763 1.120 0.375 0.724 1.200
# 18 1.033 0.847 1.242 0.422 0.786 1.281

μ0 40◦C 0.139 0.065 0.246 0.139 0.065 0.246
p 0 2
λ 4.208 1.555 0.596 2.170 4.208 1.555
β 1.887 1.296 2.560 1.983 1.796 2.170
log likelihood −187.609 −174.154
AIC 413.218 386.308
DIC 392.964 363.232

IG TED

Parameter Unit mean 2.5% 97.5% mean 2.5% 97.5%

μ 65◦C # 1 0.288 0.475 0.922 0.287 0.467 0.869
# 2 0.331 0.488 0.924 0.323 0.477 0.871
# 3 0.366 0.521 0.945 0.355 0.508 0.903
# 4 0.376 0.412 0.958 0.364 0.415 0.925
# 5 0.400 0.709 0.970 0.388 0.640 0.944
# 6 0.318 0.710 1.005 0.312 0.642 1.008

85◦C # 7 0.528 0.587 0.648 0.503 0.563 0.668
# 8 0.529 0.575 0.650 0.504 0.550 0.670
# 9 0.225 0.594 0.677 0.202 0.570 0.708
# 10 0.259 0.636 0.696 0.235 0.620 0.733
# 11 0.288 0.440 0.708 0.263 0.435 0.753
# 12 0.294 0.429 0.749 0.272 0.424 0.814

100◦C # 13 0.314 0.447 1.261 0.292 0.444 1.077
# 14 0.248 0.487 1.262 0.224 0.490 1.078
# 15 0.385 0.780 1.294 0.375 0.706 1.118
# 16 0.386 0.763 1.309 0.375 0.689 1.143
# 17 0.375 0.790 1.333 0.388 0.714 1.168
# 18 0.429 0.845 1.386 0.428 0.774 1.258

μ0 40◦C 0.129 0.103 0.158 0.139 0.065 0.246
p 3 1.438 1.002 1.866
λ 0.596 2.170 4.208 1.555 0.596 2.170
β 1.983 1.795 2.173 1.985 1.800 2.170
log-likelihood −194.929 −167.167
AIC 427.858 374.334
DIC 402.791 350.862
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process achieves the maximum loglikelihood and minimumAIC value. Although the results
for TED process are close to the gamma process, the TED process outperforms the gamma
process from the perspective of AIC and DIC.

6.2. Sensitivity analysis

To investigatewhether the changes of the prior distributionwill affect the reliability inference,
we performed sensitivity analyses with respect to prior distributions. To reflect the effects of
the priors, we set three levels for themean hyper-parameters (γ , ημ), which are (3, 10), (1, 4),
and (6, 13), and three levels for precision hyper-parameters (1/σ 2, λμ, νμ, ξμ,α,β) which
are 0.0001, 0.0002, and 0.0003. For different priors, we can observe in Table 6 that absolute
relative changes of MTTF compared with the first scenario are all less than 1.24Ğ, showing
that the changes of prior distributions do not significantly affect the posterior inference.

Figure 9. The PDF and CDF curves of the lifetime for each stress loss device based on the proposed TED
process.

Table 10. The MTTFs for each stress loss device under for accelerated temperature stress and usage stress
based on four models.

65◦C 85◦C
GaAs #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12

Wiener 104.46 95.33 88.14 86.36 81.50 98.33 60.46 60.32 54.68 55.87 54.02 49.66
gamma 105.25 92.37 83.70 81.58 76.50 96.14 59.74 59.57 53.25 54.53 52.52 48.38
IG 104.44 90.89 82.16 80.19 75.32 94.67 57.27 57.19 51.63 52.67 51.01 47.67
TED 104.88 93.20 84.80 82.85 77.69 96.66 59.98 59.89 53.59 54.85 52.92 48.67

100◦C 40◦C
GaAs #13 #14 #15 #16 #17 #18 Usage stress

Wiener 36.03 35.87 34.23 33.07 32.12 29.15 221.49
gamma 34.46 34.37 33.30 32.56 31.98 30.26 239.37
IG 33.30 33.23 32.54 32.13 31.75 30.69 232.85
TED 34.79 34.69 33.47 32.66 32.01 29.99 216.06
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6.2.1. Reliability inference
According to Theorem 3.1, we can obtain the PDF and CDF of the failure time for each unit,
which are shown in Figure 5. The MTTFs for each unit are illustrated in Table 7. Based on
Theorem 3.2, the PDF and CDF of the RUL are shown in Figure 6. The PDF and CDF of
the RUL for the first GaAs laser based on Wiener process, gamma process, inverse Gaussian
process and TED process when the current degradation values equal 3, 6, 9/,m, respectively,
are shown in Figure 7, which shows that PDFs andCDFs of the RUL based on gamma process
are very close to that of the TEDprocess. TheMRLs for eachGaAs laser based on fourmodels
are shown in Table 8.

Figure 10. The PDF and CDF of the RUL for the first stress relaxation unit based onWiener process, gamma
process, inverse Gaussian process and TED process when the current degradation values equal 2, 14, 26,
respectively.

Figure 11. The estimated PDFs and CDFs of the RULs based on the TED process with random drifts and
covariates along with the MRLs (dotted line) under usage stress at different time points.
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6.3. Stress relaxation data

The Stress relaxation data in Yang (2007) (Example 8.7, pp. 351) are used in this section to
illustrate the proposed TED process with random drifts and covariates. This data includ-
ing stress loss and measurement time epochs are available from Ye et al. (2014). The stress
relaxation is the loss of stress in a component subject to a constant strain over time. The
device fails due to excessive stress relaxation, for example, the electrical connector is consid-
ered to be a failure if the stress relaxation exceeds Df = 30% of its initial stress relaxation.
The accelerated degradation data are collected under three temperature stress level: 65◦C,
85◦C and 100◦C. This data set is modelled by many models, such as the regression method
(Yang, 2007) and inverseGaussian process (Ye et al., 2014). To be consistent with Yang (2007),
we also assume the usage temperature is S0 = 40◦C and the highest allowable temperature

SH = 100◦C, respectively. The transformed stress is φ(Sk) =
1
Sk
− 1

S0
1
SH
− 1

S0
. The time transforma-

tion is t0.45 according to Hong and Ye (2017) and Tseng and Lee (2016). Let ζ0 be the initial
stress and�ζ be the stress loss, and then the degradation characteristic is defined as�ζ/ζ0.
The degradation paths versus the original time scale for each unit and the degradation paths
versus the power transformed time scale can be found in Figure 8.

Table 11. The MRLs for each stress loss device based on four models.

Wiener process gamma process

Cur. Deg. #1 #7 #13 Usage stress #1 #7 #13 Usage stress

0.00 104.46 60.46 36.03 221.49 105.25 59.74 34.46 239.37
2.00 97.59 56.46 33.64 207.13 98.26 55.78 32.18 223.43
4.00 90.72 52.46 31.25 192.77 91.26 51.82 29.91 207.49
6.00 83.85 48.47 28.86 178.41 84.27 47.86 27.63 191.56
8.00 76.98 44.47 26.47 164.06 77.27 43.89 25.36 175.62
10.00 70.11 40.47 24.08 149.70 70.28 39.93 23.08 159.68
12.00 63.24 36.47 21.69 135.34 63.28 35.97 20.80 143.75
14.00 56.37 32.47 19.30 120.98 56.29 32.01 18.53 127.81
16.00 49.50 28.47 16.91 106.63 49.29 28.05 16.25 111.88
18.00 42.63 24.47 14.52 92.27 42.29 24.09 13.98 95.94
20.00 35.75 20.47 12.12 77.91 35.30 20.13 11.70 80.00
22.00 28.88 16.47 9.73 63.55 28.30 16.17 9.42 64.07
24.00 22.01 12.47 7.34 49.20 21.31 12.21 7.15 48.13
26.00 15.14 8.47 4.95 34.84 14.31 8.24 4.87 32.19
28.00 8.27 4.47 2.56 20.48 7.32 4.28 2.60 16.26

IG process TED process

Cur. Deg. #1 #7 #13 Usage stress #1 #7 #13 Usage stress

0.00 104.44 57.27 33.30 232.85 104.88 59.98 34.79 216.06
2.00 97.50 53.48 31.13 217.33 97.92 56.01 32.49 201.70
4.00 90.55 49.69 28.96 201.81 90.96 52.03 30.18 187.35
6.00 83.60 45.91 26.79 186.30 84.00 48.05 27.88 172.99
8.00 76.66 42.12 24.63 170.78 77.04 44.08 25.58 158.63
10.00 69.71 38.33 22.46 155.27 70.08 40.10 23.27 144.27
12.00 62.76 34.54 20.29 139.75 63.12 36.12 20.97 129.92
14.00 55.82 30.75 18.12 124.24 56.16 32.15 18.67 115.56
16.00 48.87 26.96 15.95 108.72 49.19 28.17 16.37 101.20
18.00 41.92 23.17 13.78 93.20 42.23 24.20 14.06 86.84
20.00 34.98 19.39 11.62 77.69 35.27 20.22 11.76 72.49
22.00 28.03 15.60 9.45 62.17 28.31 16.24 9.46 58.13
24.00 21.08 11.81 7.28 46.66 21.35 12.27 7.16 43.77
26.00 14.14 8.02 5.11 31.14 14.39 8.29 4.85 29.41
28.00 7.19 4.23 2.94 15.62 7.43 4.32 2.55 15.06
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6.3.1. Parameter estimation
We fit the TED process with random drifts and covariates defined in Section 4.1 based on
the prior specified in Section 4.2 to the transformed stress loss degradation data. We first
run 2000 iterations as the burn-in period of the Markov chains, and then another 40,000
iterations are further run to obtain the posterior samples for posterior inference. According
to the trace plot for the posterior samples, we can justify the convergency of the Markov
chain. The posterior estimation of the drift parameters μi, dispersion λ, p, μ0 and β along
with the log-likelihood, AIC and DIC for TED process along with Wiener process, gamma
process and IG process for the stress loss data are shown in Table 9. The TED process with
p = 1.438 has the maximal value of the log-likelihood and minimal AIC and DIC.

6.3.2. Reliability inference
According to Theorem 4.1, we derive the failure-time distribution for the stress-loss data
shown in Figure 9. TheMTTFs are given in Table 10. As the temperature increases, theMTTF
decreases. The estimated PDFs of RUL under usage stress when the current degradations
are 2, 14, 26, respectively, can be derived based on Theorem 4.2 shown in Figure 10. The
estimated PDFs concentrate on the MLR, as the unit #1 degrades towards the end of its life.
Figure 11 shows the estimated PDFs and CDFs of the RULs based on the TED process with
randomdrifts and covariates alongwith theMRLs (dotted line) under usage stress at different
time points. The correspondingMRLs for units #1, #7, #13 at different time points are shown
in Table 11.

7. Conclusion

In this paper, we proposes a TEDprocess with randomdrifts and a TEDprocess with random
drifts and covariates. We demonstrate the applicative effectiveness of the proposed models
by the classical GaAs laser degradation data and stress relaxation accelerated degradation
data, respectively. The closed-formof the failure-time distribution,MTTFs, RULdistribution
and MRLs are derived. The proposed model performs better than the traditional stochastic
process. We expected to extend these two model to more complication degradation paths.
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Appendices

Appendix 1. Full conditional posterior distribution for TED process

Before inferencing the full conditional posterior distribution of each parameter, we introduce one nota-
tion tomake our expressmore explicit.�\η indicates a parameter vector with η removing from�. The
full conditional posterior distributions of each parameter are derived as follows.

(1) With the joint posterior distribution proportional to (6), we derive the full conditional posterior
distribution of (μk, σ 2

k ) as

π(η, σ 2 |�\(η,σ 2),�y) ∝ (σ 2)(1/2+n/2+νμ+1)

× exp
{
−2ξμ + λμ(η − ημ)2 +∑n

i=1(μi − η)2
2σ 2

}
, (A1)

which is NIG(λ′μ, η′μ, ν′μ, ξ ′μ), where λ′μ = λμ + n, η′μ = (λμημ +
∑n

i=1 μi)/(λμ + n), ν′μ =
n/2+ νμ, and ξ ′μ = ξμ + λμη2μ/2+

∑n
i=1 μ2

i /2− (λμημ +
∑n

i=1 μi)
2/(2(λμ + n)).

(2) To obtain the full conditional distribution of λ, we derive the following display

π(λ |�\λ,�y) ∝ λ
−
(
α+

∑n
i=1 mi−n

2 −1
)

× exp

⎡
⎣−λ

⎧⎨
⎩β +

n∑
i=1

mi−1∑
j=1

�ti,j
2

d
(
�yi,j
�ti,j

;μi, p
)⎫⎬
⎭
⎤
⎦ , (A2)

which is Gamma
(
α +

∑n
i=1 mi−n

2 ,β +∑n
i=1
∑mi−1

j=1
�ti,j
2 d

(
�yi,j
�ti,j ;μi, p
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.
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(3) With the joint posterior distribution proportional to (6), it is easy to obtain the full conditional
distributions of p, which are given by

π(p |�\p,�y) ∝ exp
{
− (p− γ )

2

2δ2

}

×
n∏
i=1

mi−1∏
j=1

exp

⎡
⎢⎣−λ�tij

⎧⎪⎨
⎪⎩

(
�yi,j
�ti,j

)2−p
(1− p)(2− p)

−
�yi,j
�ti,j μ

1−p
i

1− p
+ μ

2−p
i

2− p

⎫⎪⎬
⎪⎭
⎤
⎥⎦ . (A3)

(4) For μi, i = 1, . . . , n, the full conditional posterior distribution has the following form

π(μi |�\μi ,�y) ∝ exp
{
− 1
2σ 2 (μi − η)2

}

×
mi−1∏
j=1

exp

⎡
⎢⎣−λ�tij

⎧⎪⎨
⎪⎩

(
�yi,j
�ti,j

)2−p
(1− p)(2− p)

−
�yi,j
�ti,j μ

1−p
i

1− p
+ μ

2−p
i

2− p

⎫⎪⎬
⎪⎭
⎤
⎥⎦ . (A4)

Appendix 2. Full conditional posterior distribution for accelerated TED process

(1) With the joint posterior distribution proportional to (12), we derive the full conditional posterior
distribution of μ0 as

π(μ0 |�\μ0 ,�y) ∝ exp

{
− (μ0 − ϑμ)

2φ2μ

} K∏
k=1

nk∏
i=1

exp

[
−{μki − μ0 exp(βφ(Sk))}2

2σ 2
k

]

∝ exp
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−1
2

[{
1
φ2μ
+

K∑
k=1

nk∑
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exp(2βφ(Sk))
σ 2
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0

−2
{
ϑμ

φ2μ
+
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k=1

nk∑
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σ 2
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, (A5)

which is N ( BA ,
1
A ), where A = 1

φ2μ
+∑K

k=1
∑nk

i=1
exp(2βφ(Sk))

σ 2k
and B = ϑμ

φ2μ
+∑K

k=1
∑nk

i=1
exp(βφ(Sk))μki

σ 2k
.

(2) The full conditional posterior distribution of σ 2
k , k = 1, . . . ,K is

π(σ 2
k |�\(σ 2k ),�y) ∝ (σ 2
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2 +1) exp
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1
2
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, (A6)

which is IG (κ + nk
2 , η + 1

2
∑nk

i=1{μki − μ0 exp(βφ(Sk))}2
)
.

(3) To obtain the full conditional distribution of λ, we derive the following display

π(λ |�\λ,�y) ∝ λ
−
(
α+

∑K
k=1 nk(mk−1)

2 −1
)

× exp

⎡
⎣−λ

⎧⎨
⎩ξ +

K∑
k=1

nk∑
i=1

mk−1∑
j=1

�tk,i,j
2

d
(
�yk,i,j
�tk,i,j

;μki, p
)⎫⎬
⎭
⎤
⎦ , (A7)

which is Gamma
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(4) For the full conditional posterior distribution of β , it can be derived as

π(β |�\β ,�y) ∝ exp
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− (β − ϑβ)

2

2φ2β

}
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. (A8)

(5) The full conditional distribution of p is given by

π(p |�\p,�y) ∝ exp
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(5) For μki, k = 1, . . . ,K; i = 1, . . . , nk, the full conditional posterior distribution has the following
form

π(μki |�\μki ,�y) ∝ exp
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Appendix 3. CDF figures

Figure A1. CDFs of failure-time based on Wiener process, gamma process, IG process and TED process
model and BS distribution: Upper panel is for scenario I; Middle panel is for scenario II; Lower panel is for
scenario III in the simulation study.
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Figure A2. Left panel is the CDFs of RUL based on Wiener process, gamma process, IG process and TED
process at current degradations 0, 4 and 8 for scenario I; Middle panel is for scenario II; Right panel is for
scenario III in the simulation study.

Figure A3. The pink solid line and green dashed line are the CDFs of the RUL distribution derived based
on the estimated parameters obtained from true model and TED process, respectively. The black dashed
line is the MRLs based on the true parameters. Left panel is for scenario I, middle panel is for scenario II and
right panel is for scenario III in the simulation study.
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