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ABSTRACT

Traditional multivariate parametric control charts often perform inad-
equately in detecting shifts in the covariance matrix when the data
deviate from normality. In this paper, we propose a multivariate non-
parametric exponentially weighted moving average (SGLGEWMA) con-
trol chart, incorporating a Sparse Group Lasso penalty, which is capable
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of detecting shifts in the covariance matrix across a wide range of
data types, including discrete, continuous, and mixed distributions. The
proposed approach projects multivariate data into a Euclidean space
and then computes an approximate Alt’s likelihood ratio, regularized

nonparametric method;
sparse group Lasso penalty;
principal coordinate analysis;
statistical process monitoring

via the Sparse Group Lasso. The resulting EWMA statistic monitors (SPM)
process shifts. Monte Carlo simulations demonstrate that SGLGEWMA
outperforms both the Lasso-based LGShewhart and the Ridge-based
RGEWMA control charts under various distributions, with enhanced
efficacy in high-dimensional scenarios. Sensitivity analyses are per-
formed on the tuning parameters (11, 12) and smoothing parameter
p, to evaluate their impact on monitoring performance. Additionally,
a simulation study and an illustrative example involving covariance
monitoring in wafer semiconductor manufacturing are presented to
demonstrate the practical application of the proposed chart. Empiri-
cal results confirm that the proposed control chart promptly identifies
abnormal fluctuations and issues timely alerts, highlighting both its
theoretical significance and practical utility.

1. Introduction
1.1. Research background and significance

Statistical Process Monitoring (SPM) was originally developed to monitor industrial pro-
cesses and ensure production quality. Over time, its application has been extended to diverse
fields, including healthcare, chemical manufacturing, financial services, and environmen-
tal monitoring. A central tool in SPM is the Quality Control Chart (QCC), which integrates
historical and real-time data to define upper and lower control limits. These limits are specif-
ically designed to detect deviations from expected process behaviour and to signal potential
anomalies that exceed predefined thresholds promptly.
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With ongoing advances in industry and data science, modern manufacturing processes
often generate complex and high-dimensional data. In recent years, numerous studies have
demonstrated that joint monitoring approaches outperform univariate methods in such
contexts. Traditional one-dimensional control charts, such as the Shewhart chart and the
Exponentially Weighted Moving Average (EWMA) chart, are often inadequate to effectively
monitor quality in production systems. These methods, particularly the average control chart
and EWMA, struggle to capture the intricacies of real-world processes. In addition, many
traditional control charts are developed under the assumption that the process data follow a
multivariate normal distribution. However, this assumption frequently does not hold in prac-
tice, especially for high-dimensional processes. As dimensionality increases, the normality
assumption becomes increasingly unrealistic, and parameter estimation within control charts
becomes less reliable. This highlights the limitations of traditional methods under nonnor-
mal conditions. Consequently, there is a pressing need to develop multivariate control charts
that are robust to nonnormality, enabling more accurate and effective monitoring of modern
production processes.

In real-world production processes, it is often necessary to monitor a large amount of
multidimensional data, in which the mean vector x and the covariance matrix X of the
underlying distribution may change. Consequently, it is crucial to design appropriate mon-
itoring schemes that can effectively track changes in both parameters. In many existing
monitoring programs for the mean vector u, researchers commonly assume that the covari-
ance matrix X remains constant (for example, X is stable when x4 changes). Under this
assumption, monitoring u becomes more reliable. However, if ¥ itself is unstable, such an
assumption may no longer hold, and any alarms triggered could be due to changes in X
rather than genuine shifts in x, thereby compromising the validity of the monitoring system.
Therefore, effective monitoring of the covariance matrix X is essential to ensure an accurate
interpretation of the variations of the process and to distinguish between changes in location
and dispersion.

1.2. Literature review

For multivariate process monitoring, Hotelling (1947) initially introduced a control chart
based on the Hotelling statistic T2. However, subsequent studies revealed that applying uni-
variate control chart techniques to monitor the T? statistic at each time point did not achieve
the desired average run length (ARL) performance. To address this limitation, Woodall
and Ncube (1985) proposed the Multivariate Cumulative Sum (MCUSUM) control chart,
and Lowry et al. (1992) introduced the Multivariate Exponentially Weighted Moving Average
(MEWMA) control chart.

Although these traditional multivariate control charts have been widely adopted, they
typically rely on the assumption that the underlying process follows a multivariate normal
distribution. In practice, however, this assumption may not hold, especially in complex or
high-dimensional processes. Relying on such distributional assumptions can significantly
affect the effectiveness of parameter monitoring. On the one hand, deviations from the nor-
mality assumption can cause the control chart’s run length distribution to deviate from the
expected value, making it difficult to accurately detect process shifts. On the other hand, test
statistics derived under normality assumptions may lack sensitivity to shifts in nonnormal
processes, potentially delaying or failing to issue timely out-of-control(OC) warnings.
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The establishment of multivariate nonparametric control charts faces theoretical chal-
lenges. The core difficulty lies in the complexity of high-dimensional data structures, which
hinders the straightforward extension of traditional univariate nonparametric concepts such
as order, sign, and rank. Nevertheless, substantial progress has been made over the past
decade, with notable approaches including data depth-based methods, robust rank-based
estimators in vector spaces, and monitoring frameworks built upon nonparametric hypoth-
esis testing. In the system of data depth methods, Liu (1995) introduced the Tukey depth
function into the process monitoring, constructing a control chart capable of simultane-
ously tracking shifts in multivariate location and dispersion parameters, thereby eliminating
reliance on the multivariate normality assumption inherent in traditional parametric meth-
ods. Based on this research, J. Li et al. (2013) proposed two innovative control charts,
SS-CUSUM and DD-CUSUM, by innovatively integrating spatial symbols and data depth.
These charts can efliciently detect shifts in location and anomalies in scale parameters,
respectively, while maintaining distributional robustness.

Rank-based methods offer another promising direction. Zou et al. (2012) developed a
nonparametric version of the multivariate EWMA control chart by leveraging ranks derived
from Euclidean distance spaces. Through recursive updating of the rank-based covari-
ance matrix, the proposed method significantly enhances sensitivity to small process shifts.
Notably, the introduction of the concept of vector inverse rank provides a new theoretical
tool for rank construction in the high-dimensional case.

The control charts mentioned above are mostly based on data depth and rank-based
information to construct multivariate nonparametric control charts. Many multivariate non-
parametric control charts use nonparametric tests to analyze process data. For instance,
Mukherjee and Chakraborti (2012) combined the Wilcoxon rank-sum test with the Ansari-
Bradley test to propose a Shewhart-type multivariate nonparametric control chart capable
of simultaneously monitoring both the mean and covariance. Building on this, Chowdhury
et al. (2014) developed a control chart based on the Cucconi two-sample test, replacing the
original test combination with a more efficient statistic, thereby enhancing the overall mon-
itoring performance. These control charts establish statistics through nonparametric tests,
thereby avoiding poor control effects caused by parameter estimation in production pro-
cesses with non-normal distributions. The above control charts can monitor process means,
covariance matrices, or both means and covariance matrices separately. Here, we focus more
on control chart schemes that monitor covariance matrices separately.

Since the transformation of the overall covariance matrix X is partially reflected in the
sample covariance matrix S, researchers often construct monitoring statistics based on S. In
some early studies, the determinant and trace of S were used as monitoring statistics. For
example, Montgomery and Wadsworth (1972) used the determinant of S for monitoring,
while Reynolds Jr and Cho (2006) used the trace of S to monitor variance shifts. However,
this approach has certain limitations: if the structure of S changes but the determinant and
trace remain unchanged, the shift cannot be detected.

Based on the progressive likelihood ratio test method, Alt (1984) proposed a generalized
likelihood ratio (GLR) monitoring statistic for a single sample that does not have the above
problem:

Wi= —(m—1) {p+1nﬂ_tr(zo—ls,-)}, M
1ol
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where §; is the (p x p) covariance matrix of the ith sample, m is the number of samples, p is
the number of observed variables (sample dimension), and X is the population covariance
matrix when the process is in control (IC). When m is large, w; is approximately distributed
as X;(p—l)' The advantage of the statistic w; is that it can detect any shift in the covariance
matrix.

In addition to the monitoring scheme proposed by Alt (1984), the following monitor-
ing schemes are also classic and are often used as comparison schemes in many literatures:
Yeh et al. (2005) separated the variance term and the covariance term, calculated the corre-
sponding statistics separately, and took the maximum value as the final monitoring statistic,
proposing the MaxMEWMYV control chart; Huwang et al. (2007) extracted shift informa-
tion from the covariance matrix based on its trace, proposing the MEWMS control chart
and MEWMY control chart under conditions where the mean vector remains constant and
changes, respectively; Hawkins and Maboudou-Tchao (2008) proposed the MEWMC con-
trol chart, building upon the ideas of Alt (1984) and Huwang et al. (2007). They assumed
that X is the identity matrix and ignored the constant term m—1 in Equation (1), resulting
in the statistic

cp =1r (Sn) —In [Sul — J 2B (2)

where So = I, Sy = (1 — p)Sy—1 + pUy, UnT (n > 1), and U, is obtained by centralizing and
standardizing the actual data X;,.

There are also some charts that can jointly monitor the mean and the variance. G. Zhang
and Chang (2008) proposed a combined DEWMA-MEWMD (CDM) chart for monitoring
the mean vector and variances in the variance-covariance matrix. Based on this, J. Zhang
et al. (2010) proposed a new single control chart which integrates the EWMA procedure
with the GLR test to jointly monitor the mean and variability of the multivariate process.

Around 2008, some researchers conducted research on the estimation of the covari-
ance matrix sparsity. A representative example is the Graphical Lasso algorithm proposed
by Friedman et al. (2008), which is used to obtain the sparsity estimation of the inverse
covariance matrix based on the Lasso penalty:

arg max {log Q| — tr(QS) — /1||Q||1} . 3)
Q

The solution Q to the above optimization problem is a sparse, full-rank estimate of the preci-
sion matrix Q of the sample covariance matrix S, where the penalty term ||Q||; is the L; norm
of Q. Different values of 1 yield different degrees of sparsity for Q. Using the Graphical Lasso
algorithm, we obtain the estimate Q of Q, and thereby obtain the sparse, full-rank estimate
S=Q1ofs.

In recent years, there have been some developments in the estimation of the sparsity of
covariance matrices and precision matrices. Danaher et al. (2014) pointed out that the stan-
dard method for the above Gaussian graphical model assumes that each observation comes
from the same distribution. When observations may correspond to multiple different cate-
gories, this assumption is unreasonable. They proposed an inverse covariance matrix sparsity
estimation based on the Sparse Group Lasso penalty:

arg max {log |Q| — tr(QS) — 2112/, — 22[1Ql2} . (4)
Q

The improved Alternating Directions Method of Multipliers (ADMM) algorithm is used
to solve the above optimization problem. The main difference between this algorithm and
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the Graphical Lasso algorithm proposed by Friedman et al. (2008) is the addition of the L,
norm of Q. Compared to the Lasso penalty, the advantage of Sparse Group Lasso is that
when estimating the sparsity matrix, it not only encourages group sparsity but also allows
for intra-group sparsity. In high-dimensional data, the sparsity selection of Lasso may be
affected by noise, leading to unstable selection, especially for highly correlated variables.
Other Fused Lasso penalties (Hoefling, 2010) and Group Lasso penalties (Guo et al., 2011)
are also discussed in the paper by Danaher et al. (2014).

Inspired by these studies, the idea of sparse estimation began to be introduced into covari-
ance matrix monitoring. Some researchers believe that in actual data scenarios, it is unlikely
that many terms in the covariance matrix X will shift simultaneously; rather, it is more likely
that only a small number of terms will shift. However, even when the process is IC, the sam-
ple covariance matrix S may still have many nonzero terms. Some of these non-zero entries
act as noise and interfere with monitoring. Furthermore, when the sample size # is smaller
than the dimension p or under other conditions, S is singular and most of the eigenvalues
of ¥ are incorrectly estimated as zero. Similarly, the covariance matrix can be regularized by
contracting it to a target structure to ensure that it is non-singular. Therefore, when monitor-
ing the covariance matrix, one can first perform a sparse estimate of S to filter out noise and
retain only information potentially related to the shift, followed by constructing the moni-
toring statistic. Yeh et al. (2012), J. Li et al. (2013), Maboudou-Tchao and Agboto (2013), and
Maboudou-Tchao and Diawara (2013) have conducted some valuable work in this area.

The control charts for monitoring the covariance matrix mentioned above are all based on
the assumption of a normal distribution. If the actual data distribution is approximately nor-
mal, these control charts exhibit good monitoring performance. Liang et al. (2019) pointed
out that when the data distribution deviates significantly from the normal distribution, the
monitoring effectiveness of many methods deteriorates. In recent years, researchers have
proposed several nonparametric monitoring schemes. Ajadi et al. (2021) performed a log-
arithmic transformation on the main diagonal elements of the sample covariance matrix
and constructed monitoring statistics based on this; Song et al. (2021) proposed an adaptive
method for joint monitoring of the mean vector and covariance matrix of a binary process;
Adegoke et al. (2022) adopted a projection method and sparse estimation ideas to propose
a nonparametric monitoring scheme. For the latest research on covariance matrix monitor-
ing, further reading is recommended in the research papers by Xu and Deng (2023) and
Chakraborty and Finkelstein (2024).

1.3. Structure of the paper

In multivariate control charts, most studies are based on the assumption that the process dis-
tribution follows a multivariate normal distribution, that is, multivariate parametric control
charts. However, in practical applications, this assumption often does not hold as the pro-
cess distribution may not be normal or even continuous. Consequently, parameter estimates
under the normal assumption can lead to poor control chart performance. For multivariate
nonparametric control charts, improving methods for analyzing spatial information in his-
torical data or establishing statistical measures can improve the performance of the control
chart. Combining the data processing method using projections from Adegoke et al. (2022)
and the method for estimating the sparsity of the covariance matrix based on the Sparse
Group Lasso penalty from Danaher et al. (2014), we will establish an EWMA control chart
based on the Euclidean space projection and the Sparse Group Lasso penalty likelihood ratio
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to monitor the change of the covariance matrix. During the construction of the EWMA mon-
itoring statistic, we have accounted for both the shift in the covariance term and the shift in
the variance term.

There are two phases in statistical process monitoring: Phase I and Phase II. In Phase I,
historical data are collected and control limits are derived. In Phase II, real-time data are mon-
itored, and the control chart responds to potential OC signals. In our monitoring scheme,
during Phase I, the IC data are projected into Euclidean space with a dimension less than or
equal to the true dimension, and then the EWMA statistic is calculated based on the approx-
imate Alt’s likelihood ratio using the Sparse Group Lasso penalty. In Phase II, new observed
data are projected onto the principal axes determined in Phase I, and the projected coordi-
nate data are used to calculate the monitoring statistic. If the monitoring statistic exceeds the
control limit, it indicates that the covariance has shifted.

After proposing the monitoring scheme, simulation testing and performance comparisons
are conducted. The simulation testing process considers the influence of three factors: (1)
sample dimension, (2) distribution of the monitored data, and (3) magnitude and type of
shifts. It examines the impact of three different types of shifts on the control chart: variance
shift, covariance shift, and simultaneous variance and covariance shift. In the simulation test-
ing process, the proposed control chart is compared with two existing methods in terms of
performance. The effectiveness of the control chart scheme in Phase II is typically measured
by the ARL, defined as the average number of steps plotted on the chart before detecting an
OC signal. The ARL for the IC and OC cases are denoted as ARLy and ARL, respectively. In
this paper, the Monte Carlo simulation method will be used for the ARL calculation.

At the same time, a sensitivity analysis will be conducted on the control chart. It should be
noted that the penalty term tuning parameters in the Sparse Group Lasso penalty likelihood
ratio function and the smoothing parameter in the EWMA statistic also have a certain impact
on the performance of the control chart. We will conduct sensitivity tests on these parameters.
Then, implementation steps for the chart and examples of semiconductor grinding processes
will be examined, and finally, a summary and outlook for multivariate nonparametric control
charts will be provided.

The structure of this paper is as follows: Section 2 covers the theory of control charts,
primarily introducing Euclidean space projection, the construction of statistical quanti-
ties, the determination of control limits, and a brief overview of related control charts;
Section 3 focuses on statistical simulation, comparing the performance of control charts
under three different shift conditions; Section 4 addresses sensitivity analysis, including the
effects of penalty term tuning parameters and smoothing parameter on control chart perfor-
mance; Section 5 analyzes the computational cost of the proposed chart; Section 6 presents
case studies, which includes implementation steps and an example of a semiconductor grind-
ing process; Section 7 summarizes the paper and provides prospects. The paper framework
is shown in Figure 1.

2. The proposed monitoring scheme
2.1. Projection onto the same or lower dimensional Euclidean space

In this subsection, to fairly compare the monitoring effects of different control charts, we
follow the settings used by Adegoke et al. (2022).
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Conclusion and Prospects

Figure 1. The structure of this paper.

2.1.1. The statistic in phase |

Let Yyxp denote the sample obtained from a discrete sequence at time i (i = 1,2,...,n),
which contains a set of n points in p dimensions. Let D, x, denote the square distance matrix
between points in Y;. I, x, denotes the identity matrix, and 1, is a vector with all elements
equal to 1. We first transform Dy, , into the cross-product matrix Gy x . Gy x can be obtained
from the formula

1
ann = _Ejnannxn(]nxn)Ta (5)

where Juxn = Lixn — %1nx1 1;:r><1- Guxn preserves the distance relationships between each
pair of points in Y},»». We can obtain the coordinates of each point in Euclidean space based
on the eigenvalue decomposition of G, xp:

ann = Unannxn(Unxn)T> (6)

where A« is the diagonal matrix formed by the eigenvalues of G, x4, and Uy, xp, is the matrix
formed by the corresponding eigenvectors.

For further research, we need to determine the number of principal axes to be retained
in Gy xn, denoted as k. When selecting the value of k, it is necessary to include most of the
information in the original data without including irrelevant random variations. We retain
all axes of G,,x,, with positive eigenvalues greater than 1. Therefore, the Euclidean principal
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axes are
1/2
Ryxk = U”X"An/xk’ (7)

where A« is the eigenvalue matrix, and Uy, is the eigenvector matrix. The Euclidean
distance between each pair of points in R, x is approximately equal to the distance of points
in Yxp.

2.1.2. The statistic in phase Il

In Phase II, we project new data onto the coordinate axes defined by R, xk. Let Y;,+x denote
the new data observed in Phase II, where n* is the number of observations. Calculate the
distances between each element in Y, and each element in Y,x,. Let D}, . denote the
distance matrix, and convert it to the cross-product matrix Gj, .

5 1 % *
nxn* — _EII’IXH(ann* - annenxl(ln*x1)T)- (8)

Note that Equation (7) can be rewritten as

-1/2
Ryxk = (ann)TUnannxi . (9)
Replace Gxn, with G} .. The coordinates of the new data in the projected space are
-1/2
;*xk = (G:xn*)TUnXﬂAnxi . (10)

The coordinates R}, , will be used in subsequent processes to calculate the EWMA-type
statistics for the approximate Alt’s likelihood ratio.

2.2. Covariance control chart based on sparse group Lasso penalty

The multivariate sample Y}, , obtained from the discrete sequence at time i (i = 1,2,...,n)
is a set of n points in p dimensions. When the process is IC, we assume that u = gpand £ =
%). For the ith variable, its mean is u;, and its variance is criz (i=1,2,...,p). The correlation
coefficient between the ith and jth variables is Pij (1,j =1,2,...,p). The mean vector and
covariance matrix can be written as

012 P1202102 ©rr P1p010p
P210201 D) cr o P2p020p
T
o= (1, 2, 135 ..., up) and X = . )
Ppl0p01  Pp20pCG2 -+ 0'},2

These parameters can be known or estimated from the Phase I data. When the process is OC,
the covariance matrix changes from Xy to Xoc. The proposed control chart is used to moni-
tor the shift in the covariance matrix. First, a suitable penalty function is selected to estimate
the sparse estimate of the projected covariance matrix. Then, a hypothesis is established, and
an approximate Alt’s likelihood ratio test statistic is calculated to test the hypothesis:

Hy: X=Xy H;:X=2%2;.

Among these, 1 # Xy, and X differs from Xy in three main OC scenarios:
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(1) variance shift (changes in the variance o; of multiple variables);

(2) covariance shift (changes in the correlation coefficients p;; between multiple pairs of
variables);

(3) simultaneous variance and covariance shift (simultaneous changes in the variances o;
and correlation coefficients p;; of multiple variables).

These three different shift scenarios are simulated in Section 3.

Most multivariate covariance matrix control charts are based on the assumption of data
normality, which means Y, xp comes from a multivariate normal distribution. For exam-
ple, Alt (1984) used the asymptotic distribution of the generalized likelihood ratio statistic
to monitor the covariance of normally distributed data. Kim et al. (2019) improved Alt’s
method by using a parameter control chart based on the ridge-penalized likelihood ratio
to monitor the covariance matrix. Nonparametric control charts include process monitor-
ing using methods such as spatial rank, data depth, and nonparametric tests. There are also
studies using other methods, such as Adegoke et al. (2022), which similarly improved Alt’s
method by using a Shewhart statistic based on the Lasso-penalized likelihood ratio to achieve
nonparametric monitoring of covariance.

In this section, we first introduce the construction of the LGShewhart control chart (Ade-
goke et al., 2022) and the RGEWMA control chart (Kim et al., 2019), and then present our
improved scheme, proposing a new control chart for monitoring covariance matrix shift,
which is named the SGLGEWMA control chart (‘SGL” means Sparse Group Lasso, and the
second capital letter ‘G’ means GLR). The improvements primarily involve (1) obtaining a
sparse full-rank estimate of the covariance matrix by solving an optimization problem based
on the Sparse Group Lasso penalty, and (2) incorporating the influence of variance terms in
the construction of monitoring statistics.

2.2.1. LGShewhart control chart and RGEWMA control chart
As mentioned above, Kim et al. (2019) improved Alt’s method by monitoring the shift of
the covariance matrix using a parameter control chart based on the likelihood ratio of the
ridge penalty function. Similarly, building on Alt’s research, Adegoke et al. (2022) utilized
the Euclidean space projection mentioned in Subsection 2.1 and the Shewhart statistic based
on the Lasso penalty likelihood ratio to achieve nonparametric monitoring of the covari-
ance matrix. The following subsections briefly introduce the construction of the monitoring
statistics for both control charts.

To obtain a full-rank estimate of the sample covariance matrix S, Kim et al. (2019) solved
an optimization problem that differs from Equation (3):

A
arg max <1og |Q| — tr(QS) — 5||Q||% . (11)
Q

The solution Q to the above optimization problem is also a full-rank estimate of the preci-
sion matrix Q, where the penalty term % |1 ||§ = % Z‘If;l Z}I;I (wij)z, has an explicit solution

Q= (AL, + %Sz)% + %S] ~1, and using the inverse of this result to replace S; in the following
equation yields the statistic w;:

wi = tr (§;) — log|Si| — p. (12)
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In the paper by Adegoke et al. (2022), the full-rank sparse estimate of the precision matrix Q
is obtained by solving Equation (3), the optimization problem with the Lasso penalty term.
This estimate is obtained using the Graphical Lasso algorithm, and the Shewhart statistic is
constructed with Equation (12). Since Kim et al. (2019) employed a parametric method, we
adapt it to the framework of this paper by constructing a nonparametric control chart using
Euclidean space projection and the EWMA statistic based on the Ridge penalty likelihood
ratio, enabling it to handle data from different distributions.

For the control limit, Adegoke et al. (2022) obtained them using a combination of the
bootstrap algorithm and the quantile method. However, subsequent research found that the
control limits obtained using this method were unstable. Therefore, both types of control
charts and the proposed control chart use the simulation search method to get the control
limit.

The two control charts mentioned above are named Lasso GLR Shewhart control chart
(abbreviated as LGShewhart) (Adegoke et al., 2022) and RGEWMA control chart (Kim
et al., 2019), respectively. In the following sections on statistical simulation and case studies,
the performance of the proposed SGLGEWMA control chart will be compared with these
two control charts.

2.2.2. The proposed SGLGEWMA control chart
Kim et al. (2019) and Adegoke et al. (2022) obtained full-rank estimates of the covariance
matrix by solving optimization problems based on Ridge and Lasso penalties, respectively.
Danaher et al. (2014) pointed out that when observations may come from multiple differ-
ent distributions, Sparse Group Lasso-based penalties perform better. When estimating the
sparsity matrix, Sparse Group Lasso not only encourages group sparsity but also allows for
intra-group sparsity; moreover, in high-dimensional data, Lasso’s sparsity selection may be
influenced by noise, leading to unstable selection, especially for highly correlated variables.
In Phase [, the ith row of data ; in R« is the coordinate of the projected data at time point
i, Si = r] 1, S; is singular, and S; is regularized by solving an optimization problem based on
Sparse Group Lasso penalty:

arg max{log |Q;| — tr (;S;) — A1[1Qill1 — A21Qill2}, (13)
Q;

where wj; is the (i, j) entry of the precision matrix €;, and 4, 4, are tuning parameters used
to obtain different degrees of shrinkage for the estimate of Q;. 11 [|Qil1 = 41 25‘:1 Z}‘Zl |wijl

and 1,]|1Q;ll» = 12\/ ZLI ZJIFZI (a)ij)2 are the penalty terms, which ensure that the estimated
precision matrix is invertible. This problem is solved using the ADMM algorithm described
in Subsection 2.2.4.

When 44, 45 € (0,00), ﬁi is a positive definite symmetric matrix; when 11,1, — 0, we
have ﬁi - Si_l; and when 41, 4, — 00, we have ﬁ,- — 0. After selecting appropriate 11, 12,
an effective estimate is obtained. If the process is IC, most elements remain unchanged; if the
process is OC, the changes in the relationships between variables can be reflected in the esti-
mate of Q. We replace S; in Equation (13) with the inverse of the estimated Q;,and propose a
nonparametric EWMA control chart based on the Sparse Group Lasso penalty for effectively
detecting shifts in the covariance matrix of individual observations in Phase II.

Throughout this paper, we focus on Phase II monitoring of individual observations,
corresponding to a subgroup size of m = 1. In this setting, each incoming observation
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is monitored sequentially without forming rational subgroups. This design is motivated
by applications where data arrive one at a time (e.g., sensor streams or industrial process
data), and immediate detection of shifts is required. Monitoring with m > 1 would introduce
additional detection delay, which is undesirable in such scenarios.

In Phase II, RZ*x K is the projection coordinate of the new sample, and the ith row data
r; of R}, . is the coordinate of the data projection at time point i. The steps for obtaining
the monitoring statistic w} for the ith sample in Phase II are the same as in Phase I, where
i=1,...,n% and H; is the inverse of the Sparse Group Lasso penalty likelihood estimate of
S; =17 Tr;-k , obtained from the following equation:

arg max {log |H;| — tr(H;S}) — A1|Hill1 — 221 Hill2} - (14)

Hj

The monitoring statistics proposed by Adegoke et al. (2022) are Shewhart-type statistics,
which cannot accumulate potential shift information. EWMA-type statistics do not have this
defect, so we consider constructing EWMA-type statistics.

First, define the matrix My = I, and then define an empty vector v. The EWMA-type
statistic w; based on the approximate Alt’s likelihood ratio is given by the following steps.

(1) Calculate the projected sample covariance matrix S;.

(2) Calculate the full-rank sparse estimate §1 of S; based on the ADMM algorithm.

(3) Let the maximum value on the diagonal of §, be denoted as v;. Add v; to the vector v and
update the current mean v; of v.

(4) TakeM; = (1 — p)M;—; + p§,~, and calculate ¢; = tr(M;) — In |M;| — k.

(5) Monitor the statistical quantity w; = ¢; x ;.

Fori=1,2,...,n, p € (0,1) is a smoothing parameter that determines the weight of the
shift information for each observation, and S; is obtained by solving the optimization prob-
lem (13). The construction process of the above statistics in Step (4) draws inspiration from
the ideas in the papers (Huwang et al., 2007; Yeh et al., 2005). M; retains the shift informa-
tion of each observation, so when the observations continue to shift, M; accumulates the shift
information of each covariance matrix.

During the simulation process, it was found that if only ¢; from Step (4) is used as the mon-
itoring statistic, it will be more sensitive to the shift of the covariance term and less effective
in monitoring the shift of the variance term. v stores the maximum value of the variance term
for each covariance matrix. Therefore, incorporating the influence of v; in Step (5) results in
the final monitoring statistic w; being more effective in monitoring the shift of the covari-
ance matrix. The theoretical derivation of the selection of monitoring statistics w; and ¢; and
related experiments, with experimental details are presented in Subsection 2.2.3.

There are several methods to obtain the control limit A, including formula derivation,
the bootstrap percentile method, the search method, etc. In this paper, the control limit is
obtained through the Monte Carlo simulation search method.

When w; > h, the control chart gives an OC message, where the control limit / is chosen
to achieve the specified ARLy. The flowchart of the EWMA control chart based on the Sparse
Group Lasso penalty is shown in Figure 2.
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/ input IC data Y ,,xp / / input observed data Y., /
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.
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/

Denote the max value on the
diagonal of S; by v;

M;=(1-p)M;_1+ pS;
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¢ X _ Cz':tr(Mi)—|Mi|—k
renew v ’s mean v;

N

the monitoring statistic w; = ¢; x v;

l

Yes

No

/ run length RL = ¢ and deliver an OC signal /

Figure 2. Flowchart of the EWMA control chart based on the Sparse Group Lasso.

2.2.3. Afurther discussion on the monitoring statistic

In Subsection 2.2.2, we present the construction process of the monitoring statistics w; and
ci, followed by the theoretical basis and experiments for selecting w; as the final monitoring
statistic.
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Table 1. ARL values of w; and ¢; under different scenarios, dimensions p, and shift magnitudes J (values in
parentheses correspond to Scenario Ill).

Scenario p Statistic =0 0.1(0.2) 0.2(0.4) 0.3(0.6) 0.4(0.8) 0.5(1.0) 0.6(1.2) 0.7(1.4) 0.8(1.6) 0.9(1.8)

Scenariol 2 Wi 20051 91.79 4747 2912 2044 1516  12.01 9.94 8.58 7.43
lq] 19934 10854 68.18 4720 33.82 2538 20.73 17.15 14.35 1238

5 Wi 199.44 6362  27.71 1587  10.86 7.95 6.42 5.27 453 3.94

lq] 199.28 89.03 4725 2891 19.87  15.01 11.66 9.57 8.03 7.06

10 Wi 20091 4208 16.94 9.80 6.62 5.13 4.13 3.46 3.01 2.67

lq] 200.86 7030 3241 18.61 1247 9.27 7.39 6.20 533 4.62

15 wi 199.20 3236 1250 7.52 5.20 4.05 336 2.89 2.58 230

lq] 20041 5882 2446  13.97 9.56 7.21 5.92 5.00 4.36 3.90

Scenarioll 2 w; 199.75 189.22 164.16 130.25 100.16 76.59  61.58 4947 4217 34.02
G 199.89 18934 163.12 12840 10042 7508 5973 4830 39.14 31.41

5 wi 199.80 17347 11830 7675 51.79 3733 2837 2326 1962 16.66

lq] 199.71 17106 11755 7536  50.17 36.31 2798 2191 17.92 15.23

10 wi 20086 189.55 156.47 11267 8390 6375 4953 3828  31.00 26.40

lq] 200.81 188.74 152.00 11464 8398 6219 4839 3842 31.24 25.81

15 wi 199.49 193.06 16837 13932 11296 8588 67.69 5346 4475 37.98

lq] 200.19 190.98 16937 14050 109.73 9056 66.28 5393  45.10 38.46

Scenariolll 2 wi 20098  43.93 18.99  11.66 8.40 6.70 5.64 4.87 4.37 4.02
G 19886 64.03 2932 17.86 1296 1034 8.55 7.39 6.45 5.79

5 wi 199.07 2417 9.88 6.24 4.64 3.85 332 2.96 2.72 2.49

lq] 20017 39.14 1631 10.06 743 5.95 5.02 4.39 3.91 3.63

10 Wi 199.63 1571 6.31 417 3.12 2.56 217 1.93 177 1.65

G 19856 29.88 1153 7.2 5.24 4.14 3.53 3.10 2.74 2.50

15 wi 19991 12,69 5.23 340 2.59 2.15 1.87 1.67 153 1.43

4] 200.02  23.64 9.55 5.85 4.36 3.56 3.05 2.69 2.39 2.20

Let M; =(1—p)Mi—1 + pfS\‘ be the smoothing covariance matrix, ¢; = tr(M;) —
In |M | —k vi= max; S, ;i and v; lie its running mean. Suppose there is a small shlft on S;
and S; changes to S* denoted as AS; = S —S;. Then AS; is a small perturbation on S;. Cor-
respondingly, matrix AM; = p AS;isa small perturbation on M;. For AM;, a matrix Taylor
expansion yields

dc; = tr [(I — M) AM;] and dw; ~ ¥idc; + cidvi.

If the shift is variance-dominated at coordinate j (i.e., AS; ~ 50 /ij» where 50j2 is a small

change on Uj , and Ej; is a matrix with the jth element on its d1agona1 equal to 1 and all other
elements being 0.), then

ow; ~ (pi_/i(l — (M) + Cil’)égjz’ (15)

;7—1_”2 ow; is strictly positive for typical parameter settings and thus amplifies local
variance chanjges. By contrast, for pure off-diagonal (covariance-only) perturbations év; &~ 0
and the response reduces to dw; & V;dc;, which may be small or sign-indeterminate.

We also conduct additional simulation experiments to further investigate the detection
properties of the proposed statistic w; under finite-sample settings. Specifically, we consid-
ered multivariate normal data under three scenarios of covariance matrix shifts (Scenario I:
variance-dominated shifts; Scenario II: covariance-dominated shifts; Scenario III: both vari-
ance and covariance shifts), with different dimensions (p = 2, 5, 10, 15) and varying shift
magnitudes. A detailed description of the simulation steps can be found in Section 3. The
results are summarized in Table 1.

where y =
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In Scenario I and Scenario III, across almost all dimensions and shift magnitudes, w;
yields substantially smaller ARL; values compared to c;, implying faster detection of variance
deviations. This validates the theoretical intuition that incorporating the maximum diagonal
element v; strengthens sensitivity to variance-related changes, which are often critical in prac-
tice. In Scenario II, w; and ¢; exhibit nearly identical ARL performance. The inclusion of v;
does not deteriorate the monitoring power in these cases, thereby ensuring that w; maintains
efficiency comparable to ¢; when variance shifts are absent.

Empirical results reveal a targeted trade-off: the statistic w; provides significant improve-
ments in Scenarios I and III involving variance shifts, at the cost of marginal performance
loss in pure covariance shifts. This behaviour stems from the variance-focussed design of ¥;,
establishing the method’s primary utility for detecting mean-relevant variance changes.

2.2.4. ADMM algorithm
To obtain a full-rank sparse estimate of S;, we need to solve the optimization problem (13),
which is addressed using the ADMM algorithm. For a detailed introduction to the ADMM
algorithm and its convergence properties, see Boyd et al. (2011).

To use the ADMM algorithm to solve problem (13), under the positive definite constraint
Q, the problem can be written as

arg max{log det(QQ) — tr(SQ) — P(2)}. (16)
Q.7

The constraint is that Q is positive definite, and Z = Q. The scaled augmented Lagrangian
function for this problem is expressed as

L, (Q,7,U) = log det(Q) — tr(SQ) — P(2) — %HQ —Z+ U2+ %n Ul (17)

Here, || - ||F denotes the Frobenius norm, U is the dual variable, and y is the penalty parame-
ter. The corresponding ADMM algorithm is obtained by iterating the following three simple
steps. In the tth iteration, the steps are as follows.

(@) QY =argmax(L, (Q,z¢~D, Ut-D)}.
Q

(b) z® = argmax{L, (Q"~D,z, Ut=D))}.
z

() UY =UutD 1 (Q® — z®),

Next, we will show in more detail the ADMM algorithm for solving the inverse covariance
matrix estimation problem based on the Sparse Group Lasso penalty.

(1) Initialization: Set Q = I, U = 0,and Z = 0.

(2) Penalty Parameter: Select a scalar y >0.

(3) Iterative Updates: For t = 1,2, 3,. . ., until convergence, update according to the follow-
ing steps.
(i) Update Q® so that the following expression is maxmized:

log det(Q) — tr(SQ) — %ng —Zt=D 4 gDz, (18)

Let VDV be the eigenvalue decomposition of the matrix S — y Z¢=1 4 5 U¢t=1),
where D is a diagonal matrix. The jth diagonal element of the resulting update is
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given by

1 2 1/2
5{—Djj+(13ﬂ+4y)/}.

(ii) Update Z®) by maxmizing the following objective:
~212 -0 + U - P2). (19)
(iii) Update the dual variable U : U1 4 Q® — z(®)

The algorithm requires a penalty parameter y to regulate the step size, as well as a con-
vergence criterion. In this paper, we set y = 1 and define the convergence condition as
follows:

199 — QY
1QE=D

< 107>,

The convergence tolerance (107°) and penalty y = 1 follow the settings in the article (Dana-
her et al., 2014), which have been shown to provide stable estimates in practice. The details
of maxmizing Equation (19) will depend on the form of the convex penalty function P(:).
Solving the maxmization problem (19) can be rewritten as

max {—% 1Q® — Z+ Ut=D)2 - P(Z)} : (20)

For Sparse Group Lasso penalties,
1/2

PQ) = /1 ) Iwijl+ A2 [ D w)* ] 1)
i#j i#j

ADMM splits the optimization into simple subproblems — one maintaining positive definite-
ness of (2, one applying sparsity penalties to Z, and one updating the dual variable U. Iterating
these steps yields a sparse, full-rank precision matrix estimate. The flowchart of the ADMM
algorithm with Sparse Group Lasso penalty is shown in Figure 3.

3. Statistical simulation

To test the monitoring performance of the proposed control chart, we need to conduct sim-
ulation experiments. In this section, we will test the proposed control chart by simulating
data from different dimensions, distributions, and shift types, and compare the results with
the control chart mentioned in Subsection 2.2.1 to demonstrate the excellent monitoring
performance of the proposed control chart.

3.1. Simulated data

This section investigates the monitoring performance of the proposed EWMA control chart
based on the Sparse Group Lasso penalty for covariance matrix shift. In the simulation
process, three factors are considered.

(1) Sample dimensions: Take four cases, 2, 5, 10, and 15, respectively.
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[Initializations QO =71 70 =0, U©® =0, choose v = 1]

Update QO:
arg max <log det(Q) — tr(SQ) — 3|0 — 24V 4 U<H>H2F)

I

Update Z®:
argmax (- 312 - Q0 + UCV|F - P(2))

|

Update U®:.
U® =pyt-1 4 (Q(t) — Z(t))

|

1l No 120 — Q¢ Djp s
t=t+1 TEIE < 10

l Yes

/ Output solution: estimated precision matrix Q /

Figure 3. Flowchart of the ADMM algorithm with Sparse Group Lasso penalty.

(2) Distribution types of the monitored data, considering three types of distribution,
including (i) discrete distribution: multivariate Poisson distribution (MPOIS); (ii) continu-
ous distribution: multivariate normal distribution (MNORM) and multivariate gamma dis-
tribution (MGAMMA); (iii) mixed distribution: mixed distribution of multivariate Poisson
distribution and multivariate normal distribution (MPOISNORM).

Among these, both MPOIS and MGAMMA data were simulated using a Gaussian Copula
model to achieve a specific covariance matrix. The marginal parameters of MPOIS are y x
1p, where lpisa column vector of dimension p consisting of ones, x# = 2; the mean vector
of MNORM is the zero vector; the shape parameter and rate parameter of MGAMMA are
settoa x 1p and f x 1p, respectively, with @ = 4 and f = 1; to simulate mixed distribution
data with dimensions p = 2, 5, 10, 15, first simulate multivariate Poisson distribution data
with dimensions p; = 1,2, 5, 8 and marginal parameters u x 1 P then generate multivariate
normal distribution data with dimensions p» = p — p; and zero mean vectors, and finally
merge the data columns into mixed distribution data.

(3) Shift scenarios of the covariance matrix. Consider three types of shifts.

Scenario I: Variance shift (changes in the variance of multiple variables), such as in man-
ufacturing, where a measurement item on a production line becomes more volatile due to
wear and tear on the measuring instrument. In this scenario, the diagonal elements of the IC
covariance matrix shift from 1 to 1 + J, while the off-diagonal elements remain unchanged.
Here, J is the shift magnitude, with values ranging from 0.1 to 0.9 in increments of 0.1.
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Scenario II: Covariance shift (changes in the correlation coefficient p;; between multi-
ple variables), such as in industrial process monitoring, where temperature and humidity
were originally positively correlated, but due to a malfunction in the air conditioning sys-
tem, the relationship between the two weakened or reversed. In this scenario, only the
oft-diagonal elements of the covariance matrix at positions {(3,5) | i,j = 1,2,3, (p — 1)} shift
from 0 to J, while the remaining off-diagonal elements and the variance (diagonal elements)
are unchanged. The setting for ¢ is the same as in Scenario I.

Scenario III: Both variance and covariance shift (multiple variables simultaneously experi-
ence changes in variance o; and correlation coefficient p;;, belonging to more complex system
anomalies), such as overall production line anomalies, leading to increased volatility in all
measurement items and disordered structural relationships between variables. In this simu-
lation experiment, the diagonal elements of the covariance matrix shift from 1 to 1 + J, while
the off-diagonal elements at positions {(i,j) | i,j = 1,2, 3, (p — 1)} shift from 0 to J, with the
remaining off-diagonal elements unchanged. Here,  ranges from 0.2 to 1.8 in increments of
0.2.

See Appendix to check the specific form of the OC covariance matrices in the above three
scenarios.

3.2. Simulation steps

Based on the above control chart theoretical model, we conducted analysis and processing
in Phase I and Phase II, respectively. In Phase I, we generated individual observations of
size n and p dimensions from an IC multivariate normal distribution, with the covariance
matrix set to the identity matrix. We then projected the simulated data onto k principal coor-
dinates and used a search method to obtain the control limits of the control chart based
on the projected data. Then, at each time i in Phase II, a random vector with a shifted
covariance matrix but unchanged location parameters is generated from the aforementioned
multivariate distribution.

Under the influence of the factors mentioned in Subsection 3.1, calculate the ARL values
under IC and OC conditions.

When the process is IC, an OC signal is considered a false alarm, so we prefer a larger
ARLy. When the process is OC, a smaller ARL; means quicker detection of shift, so we prefer
a smaller ARL;. Generally, the quality of control charts is compared under the condition
that ARLy is fixed, with a smaller ARL, indicating better monitoring performance. There
are typically three calculation methods: the Markov chain method, the integral method, and
the Monte Carlo random simulation method. This paper adopts the Monte Carlo random
simulation method.

At the same time, we note that the proposed control chart has relatively high requirements
for IC data. When the IC data generated in a single batch cannot adequately characterize the
distribution characteristics of the data, the control chart’s monitoring effectiveness will also
be poor, the run length will fluctuate more significantly, and the control limits will be unsta-
ble. Therefore, when determining the control limits using the search method and calculating
the ARL) after a shift, we generate K sets of IC data to obtain the average and thus an accu-
rate ARLy and control limits. Additionally, for each set of IC data, we simulate and generate
N sets of OC data with a size of #* and a dimension of p, thereby obtaining the ARL; under
that set of IC data.
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Table 2. The ARL values across different dimensions and shift magnitudes under Scenario I.
0
Distribution p 0 0.1 0.2 03 0.4 0.5 06 07 08 0.9

MNORM 2 200.51 91.79 47.47 29.12 20.44 15.16 12.01 9.94 8.58 743
5 199.44 63.62 27.71 15.87 10.86 7.95 6.42 5.27 4.53 3.94
10 200.91 42.08 16.94 9.80 6.62 5.13 413 3.46 3.01 2.67
15 199.20 32.36 12.50 7.52 5.20 4.05 3.36 2.89 2.58 2.30

MPOIS 2 199.26 105.98 60.52 38.98 27.88 21.78 17.59 14.64 12.51 11.10
5 200.92 7772 36.42 22.21 15.45 11.75 9.22 7.83 6.57 5.83
10 199.78 54.02 23.13 13.55 9.38 7.16 5.76 4.88 4.30 3.71
15 200.16 43.78 17.19 10.07 7.06 5.58 4.57 3.88 3.44 3.07

MGAMMA 2 200.15 102.94 59.10 37.90 26.75 20.55 16.97 13.98 12.08 10.55
5 200.41 73.69 35.36 21.13 14.42 10.96 8.55 7.21 6.21 5.50
10 200.29 54.03 2241 12.85 9.02 6.87 5.54 4.65 3.99 3.58
15 199.92 4593 17.90 10.43 711 5.49 4.49 3.84 330 2.96

MPOISNORM 2 199.83 115.32 71.29 47.92 35.62 27.02 21.52 17.88 15.41 13.37
5 200.82 92.25 47.64 28.90 19.84 14.70 11.47 9.11 7.79 6.82
10 202.01 64.54 2830 16.05 10.92 8.04 6.45 5.39 4.60 4.04
15 200.02 50.21 20.15 11.38 7.90 6.00 4.78 4.14 3.61 3.23

3.3. Simulation results

In this section, we compare the monitoring performance of the SGLGEWMA control chart
based on the Sparse Group Lasso penalty proposed with the RGEWMA control chart based
on the Ridge penalty (Kim et al., 2019) and the LGShewhart control chart based on the
Lasso penalty (Adegoke et al., 2022). Both are capable of nonparametric monitoring of the
multivariate covariance of individual observations.

When comparing the performance of different control charts, we typically set ARLj to
200, which can be obtained by setting the control limit h. For the values of ARL, the average
is calculated based on the squared Euclidean distance with K = 100, n = 800, n* = 600, N =
500 simulation run lengths. Additionally, the penalty terms are set to adjust the compression
parameters A; = 0.3, 1, = 0.025, and the smoothing parameter p = 0.2. For LGShewhart,
following Adegoke et al. (2022), the Lasso penalty parameter is set to 1.5; for RGEWMA,
preliminary simulations indicated that a Ridge penalty parameter of 15 and a smoothing
parameter of 0.2 yield the best monitoring performance.

The simulation results will be presented in four subsections below: Scenario I, Scenario
I1, Scenario III, and the influence of dimensions. These subsections essentially represent
scenarios that may occur in reality and possess significant simulation value.

3.3.1. Scenariol

Table 2 presents the ARL values of the proposed control chart under Scenario I. It can be
seen that the proposed control chart has the best detection performance for MNORM under
Scenario I, and the detection performance improves with increasing dimension for all distri-
butions; however, it has the worst monitoring performance for the mixed (MPOISNORM)
distribution. Figure 4 shows the ARL comparison of the three control charts when p = 15
under Scenario I. It shows that the proposed chart outperforms the other two charts.

3.3.2. Scenarioll
Table 3 presents the ARL values of the proposed control chart under Scenario II. It can be
seen that the proposed chart has better detection performance for all types of distributions at
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Figure 4. The ARL values as a function of d when p = 15 (under Scenario I).

p = 5. Figure 5 shows the comparison of the ARL values for the three control chartsatp = 15
under Scenario II. Compared to the other two charts, the proposed chart does not have an
absolute advantage under Scenario II, but it does have an advantage when the distribution is
multivariate normal or a mixture distribution with a large shift. However, under Scenario II,
the proposed chart is not significantly different from the LGShewhart control chart, which
has the best monitoring performance among the three.

3.3.3. Scenario lll

Table 4 presents the ARL values of the proposed control chart under Scenario III. It can
be seen that the detection performance of the control charts improves with increasing
dimension, and they also exhibit better detection performance for data under the MNORM
distribution. Figure 6 compares the ARL values of the three charts under Scenario III when
p = 15. According to Figure 6, the proposed chart exhibits better detection performance than
the others under Scenario III when p = 15.

3.3.4. Theimpact of dimensions

To study the monitoring performance of the proposed SGLGEWMA control chart in differ-
ent dimensions, Tables 5 and 6 present comparisons of the ARL values in various dimensions
between the proposed control chart and the RGEWMA control chart (Kim et al., 2019)
(Overall, the RGEWMA control charts are more effective than the LGShewhart control
charts in terms of monitoring) under Scenario I when the simulated data follow MPOIS and
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Figure 5. The ARL values as a function of d when p = 15 (under Scenario Il).

Table 3. The ARL values across different dimensions and shift magnitudes under Scenario Il.
0
Distribution p 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

MNORM 2 199.75 18922 16416 130.25 100.16 76.59 61.58 49.47 4217 34.02
5 199.80 17347 11830 76.75 51.79 37.33 28.37 23.26 19.62 16.66
10 200.86 189.55 15647  112.67 83.90 63.75 49.53 38.28 31.00 26.40
15 19949 193.06 16837 13932 11296 85.88 67.69 53.46 44.75 37.98

MPOIS 2 199.22  191.54 17657 160.06 147,52 12990 113.83 102.06 89.74 7741
5 20021 178.08 143,55 11358 91.20 71.67 59.05 51.51 41.82 37.31
10 20041 189.89 16590 14330 118.58 97.10 83.51 67.84 58.19 5134
15 20026 18871 176,53 157.03 136.27 118.64 98.77 84.52 75.14 64.97

MGAMMA 2 20050 19493 186.08 174.73 16347 151.24 13532 126,54 11265 102.78
5 199.23 181.61 16127 13421 11045 93.86 80.78 71.44 65.20 54.09
10 19844 19059 17536  154.02 13201 114.82 99.89 89.30 76.21 67.91
15 20059 19288 181.76 165.01 14587 13237 11551 10237 90.05 79.89

MPOISNORM 2 200.10  195.09 189.87 184,58 17550 16558 15195 14735 133.67 129.99
5 199.21 18745 166.96 138.11 110.95 88.17 73.45 58.21 50.03 43.50
10 20037 18692 16638 142.15 116.20 95.75 79.36 65.66 56.28 47.29
15 20151 19392 17751 156.00 13322 113.83 98.39 83.08 71.33 62.71

MNORM distributions. The results show that the proposed control chart exhibits superior
monitoring performance across the given dimensions, with performance improving as the
dimension increases (that is, the percentage reduction in ARL compared to the RGEWMA
control chart increases with larger dimensions).
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Figure 6. The ARL values as a function of d when p = 15 (under Scenario lll, values for = 0 omitted).

3.4. Summary of simulation results

The tables above show the ARL; values of the proposed SGLGEWMA control chart as a
function of dimension and shift magnitude under three different shift scenarios and four
distributions: MNORM, MPOIS, MGAMMA, and MPOISNORM. The results in the tables
indicate the following.

(1) The proposed SGLGEWMA control chart exhibits different performances in different
distributions. Overall, when the data follows a MNORM distribution, the proposed chart
detects a shift faster than other distributions. However, when the data follows a MPOIS-
NORM distribution, if Scenario I or Scenario III occurs, the chart alerts more slowly than
other distributions. For example, when p = 5 and detecting variance shift 6 = {0.1, 0.9}
(that is, Scenario I), the ARL; values are {63.62, 3.94} under MNORM and {77.72, 5.83}
under MPOISNORM; under MGAMMA, it is {73.69, 5.50} and under MPOISNORM it
is {92.25,6.82).

(2) In Scenario I and Scenario III, the performance of the proposed control chart improves
as the dimension p increases; in Scenario II, the best results are obtained when p = 5.
This result is also expected, as in Scenario II that only 12 covariance elements shift when
p = 5,10, 15.
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Table 4. The ARL values across different dimensions and shift magnitudes under Scenario Il.

0
Distribution p 0 0.2 0.4 0.6 0.8 1 1.2 14 1.6 18
MNORM 2 200.98 43.93 18.99 11.66 8.40 6.70 5.64 4.87 437 4.02
5 199.07 2417 9.88 6.24 4.64 3.85 332 2.96 2.72 2.49
10 199.63 15.71 6.31 4.17 3.12 2.56 217 1.93 177 1.65
15 199.91 12.69 5.23 3.40 2.59 2.15 1.87 1.67 1.53 143
MPOIS 2 199.38 58.54 28.40 18.06 13.37 10.68 9.30 8.08 7.37 6.77
5 199.20 34.22 15.08 9.73 7.29 6.00 5.14 4.65 4.20 3.89
10 200.20 22.61 9.31 6.04 4.44 3.44 3.59 3.10 2.76 2.48
15 200.62 17.23 7.22 4.59 352 2.84 247 2.20 2.01 1.80
MGAMMA 2 200.57 57.56 27.28 17.43 13.02 10.46 8.83 7.89 6.99 6.52

5 200.09 33.49 14.53 9.28 7.06 5.83 5.01 441 3.95 3.67
10 199.75 22.37 9.05 5.69 430 3.47 298 2.62 2.38 2.16
15 201.70 17.85 737 4.59 347 2.82 241 2.16 1.99 1.84

MPOISNORM 2 199.66 70.24 34.21 21.13 14.97 11.34 9.59 8.07 7.08 6.33
5 199.35 44.39 18.74 11.22 7.92 6.31 5.26 4.57 4.06 3.67
10 200.55 27.24 10.87 6.77 4.86 3.90 330 2.86 2.58 2.33
15 201.62 19.88 7.92 4.96 3.67 3.01 2.57 2.26 2.04 1.88

Table 5. The ARL values of RGEWMA control chart (1) and proposed control chart (2) for MPOIS data.

p=2 p=>5 p=10 p=15

é m () m ) m () m )

0 200.24 200.51 200.80 199.44 200.39 200.91 200.61 199.20
0.1 133.94 91.79 102.38 63.62 86.36 42,08 66.80 3236
0.2 95.65 47.47 59.12 27.71 43.67 16.94 32.55 12.50
03 69.74 29.12 39.34 15.87 26.41 9.80 20.01 7.52
04 53.90 20.44 27.52 10.86 17.74 6.62 14.42 5.20
0.5 43.29 15.16 20.97 7.95 12.88 513 11.26 4.05
0.6 35.31 12.01 16.90 6.42 10.12 413 9.37 3.36
0.7 29.44 9.94 14.02 527 8.25 3.46 7.96 2.89
0.8 25.13 858 12.03 453 7.02 3.01 5.44 258
0.9 21.55 743 1043 3.94 6.03 267 4.71 230

Table 6. The ARL values of RGEWMA control chart (1) and proposed control chart (2) for MNORM data.

p=2 p=>5 p=10 p=15

é (1) ) M @) m ) (M )

0 199.99 199.26 199.49 200.92 199.83 199.78 199.89 200.16
0.1 111.81 105.98 85.28 77.72 64.92 54.02 53.35 43.78
0.2 70.62 60.52 45.22 36.42 30.92 23.13 25.53 17.19
0.3 47.36 38.98 28.95 22.21 20.35 1355 16.63 10.07
0.4 34.60 27.88 20.99 15.45 15.11 938 12.48 7.06
0.5 26.81 21.78 16.41 11.75 11.76 7.16 10.19 5.58
0.6 22.16 17.59 13.34 9.22 10.06 576 8.62 4.57
0.7 18.65 14.64 11.49 7.83 8.75 4.88 7.58 3.88
0.8 16.10 1251 9.90 6.57 7.58 430 6.75 344
0.9 13.98 11.10 8.86 583 6.70 371 6.16 3.07

(3) The proposed control chart is the most effective in detecting Scenario III, followed
by Scenario I. However, it is less effective in detecting Scenario II than the other two
scenarios.

(4) We also compare the performance of the proposed SGLGEWMA control chart with
the LGShewhart control chart and the RGEWMA control chart. Under the specified
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p = 15, the results indicate that for the distributions under discussion, the proposed
SGLGEWMA control chart outperforms the other two control charts in terms of perfor-
mance under both Scenario I and Scenario III, and it also provides better detection per-
formance for both large and small shifts. However, under Scenario II, the LGShewhart
control chart performs better under the MPOIS and MGAMMA distributions, while
the SGLGEWMA control chart demonstrates good monitoring performance under the
MNORM distribution and large shifts in the MPOISNORM distribution. Overall, the
proposed SGLGEWMA control chart exhibits superior monitoring performance.

(5) Theresults of the dimensionality analysis show that the proposed control chart has better
monitoring effects in several given dimensions, and the larger the dimension, the better
the effect.

4. Sensitivity analysis

The design of control charts involves the selection of parameters, which depend on the shift
scenario, shift magnitude, and data distribution. In this section, we will study the changes in
control chart monitoring performance caused by the penalty term tuning parameters 4;, 4,
and the smoothing parameter p. When studying the penalty term tuning parameters, we
analyze the monitoring effects under three different shift scenarios, with the distribution
set as a multivariate normal distribution and dimension p = 10. When studying the sen-
sitivity of the smoothing parameter, we conduct separate studies on multivariate Poisson
distribution and multivariate normal distribution data, while considering Scenario I shift
and dimension p = 10. The L; penalty term tuning parameter 4; will consider five cases:
A1 =10.2,0.3,0.4,0.5,0.6. The L, penalty term tuning parameter A, will be considered for
five cases: 4, = 0.025,0.05,0.75, 0.1, 0.2. The smoothing parameter p will be considered for
five cases: p = 0.1,0.2,0.3, 0.4, 0.5. Since the target ARLy = 200, the ARL, values have been
excluded from the figures in this section.

4.1. Tuning parameters

An important factor to the usage of Equation (13) or (14) is the selection of tuning param-
eters. A1, 12 are the tuning parameters of the penalty term, used to achieve different degrees
of shrinkage in the estimation of ;. The penalty term ensures that the estimated precision
matrix is invertible and sparse. Sparse Group Lasso not only encourages group sparsity but
also allows for intra-group sparsity when estimating the sparsity matrix. In high-dimensional
data, the sparsity selection of Lasso may be influenced by noise, leading to unstable selection,
especially for highly correlated variables. As proposed in Subsection 2.2.2, selecting appro-
priate A; and 1, will yield effective estimates. If the process is IC, most elements remain
unchanged. If the process is OC, the relationships between variables can be reflected in the
estimates of Q.

Tuning parameters are often set in a pragmatic manner to balance sparsity and inter-
pretability (S. Li et al., 2013; Meinshausen & Bithlmann, 2010). As emphasized in prior work,
approaches such as cross-validation(CV), BIC, or AIC may lead to overly dense works that are
less useful for exploratory or hypothesis-generating purposes. For this reason, an application-
driven choice is often more appropriate to ensure models remaining both interpretable and
plausible.
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The k-fold CV score for a generic regularized estimate Q 11,2, based on fixed 11, 4, is given
as

K
=k —k
CV(h1d2) = = > miftr(SPQTE) + log S} 1) (22)
k=1
where 1y is the size of subset k, for k = 1, . . ., K disjoint subsets, S® is the sample covariance

matrix based on subset k, @?ﬁ)z and ﬁfl?]?z are the estimated covariance matrix and precision
matrix excluding subset k, respectively. The proper 41, 4, that maxmize the CV(11, 12) score
can be selected via a grid search.

However, as in our setting, the proposed chart monitors individual observations (m = 1
in Phase II), meaning that each new observation is sequentially incorporated into the mon-
itoring statistic, rather than aggregated in rational subgroups. The use of such CV-based
procedures becomes less practical. This is consistent with prior work (Adegoke et al., 2022).
Computing the performance of the proposed chart over a range of values for 1 and 4, may
be computationally onerous. We can search densely over 1; when holding 4, at a fixed low
value. Then, holding 1, at the selected value, we conduct a quick search over A,. Following
Danaher et al. (2014), we set 1; € [0.2,0.6], 42 € [0.025,0.2], which ensure comparability
and computational feasibility.

4.1.1. L, penalty term tuning parameter \q

In this paper, we discuss the changes in sensitivity caused by different shift scenarios and
different shift magnitudes J, as well as five cases of 1; = 0.2,0.3,0.4,0.5,0.6, when the L,
penalty term tuning parameter is set to 0.025, the smoothing parameter p = 0.2, and the
distribution is a multivariate normal distribution. When 4, is too large or too small, the
resulting Q; becomes irreversible within the accuracy range. As shown in Figure 7, under
Scenario I and Scenario III, the differences in ARL; under various 4; values are not very
significant, while the differences are relatively larger under Scenario II. Overall, when 4; =
0.3, all types of shifts exhibit good monitoring performance.

4.1.2. L, penalty term tuning parameter A,

When the L; penalty term tuning parameter is set to 0.3, the smoothing parameter p = 0.2,
and the distribution is a multivariate normal distribution, the changes in sensitivity caused
by different shift scenarios and different shift degrees 6, 1, = 0.025,0.05,0.75,0.1,0.2 are
examined. As shown in Figure 8, as 1, increases, the ARL; also increases, except when 4, =
0.05 under Scenario II, which yields the best monitoring performance. Overall, 4, = 0.025
provides good monitoring performance.

4.2. Smoothing parameter p

The EWMA control chart utilizes historical information during the monitoring process
and is highly effective in monitoring small and medium-sized shifts. Since its introduc-
tion, the EWMA control chart has been extensively studied by researchers worldwide. The
smoothing parameter p, a crucial parameter in EWMA control charts, has also received sig-
nificant attention. Lucas and Saccucci (1990) indicated that when p takes a smaller value,
the EWMA control chart performs better in detecting small shifts; when p takes a larger
value, the EWMA control chart performs better in detecting larger shifts. In prior work
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Figure 8. The effect of parameter 4, on monitoring effectiveness.

(Hawkins & Maboudou-Tchao, 2008; Lowry et al., 1992), p values between 0.1 and 0.3 are
recommended for practical applications.

This paper examines changes in sensitivity under five distinct scenarios. The tuning
parameters are fixed at A; = 0.3 and 1, = 0.025, and the shift type is specified as Scenario



26 JHUETAL.

MNORM MPOIS

o |

0 _ — p=0.1

o _| — p=0.2

N 8 —— =03

g | — p=04
= & ° p=0.5
< o _| < [

« \

o _] \

-~ o _|

- \*——S-Ag
o o 4

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

Figure 9. The effect of parameter p on monitoring effectiveness.

Table 7. The effect of parameter p on ARL; values under Scenario I.

0
Distribution p 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
MNORM 0.1 200.63 4331 18.96 11.52 8.35 6.38 5.11 4.39 3.78 330

0.2 200.91 42.08 16.94 9.80 6.62 5.13 413 3.46 3.01 2.67
0.3 200.59 44.33 16.84 9.50 6.38 4.64 3.71 3.16 2.73 2.46
0.4 200.30 47.38 17.48 9.50 6.16 4.65 3.06 2,60 2.60 237
0.5 200.06 48.58 18.66 9.73 6.26 4.49 3.60 3.00 253 233

MPOIS 0.1 200.91 51.71 24.49 16.12 11.54 8.90 7.52 6.37 5.49 4.83
0.2 199.78 54.02 23.13 13.55 9.38 7.16 5.76 4.88 4.30 3.71
0.3 200.88 57.92 24.62 13.51 8.94 6.87 5.37 4.45 3.86 343
0.4 200.04 61.70 26.00 14.32 9.61 6.77 543 4.44 3.68 3.26
0.5 199.43 64.24 27.46 15.02 9.64 6.80 522 4.4 3.72 331

I and p = 10. The scenarios comprise the multivariate Poisson distribution and the multi-
variate normal distribution. For each distribution type, sensitivity is evaluated across varying
shift magnitudes d and smoothing parameters p (specifically, p = 0.1,0.2,0.3,0.4, 0.5). This
range covers the recommended values and additionally allows us to evaluate robustness in
slightly larger p settings.

As shown in Table 7 and Figure 9, for different distributions, as p decreases, the detection
performance for smaller shifts improves, while the detection performance for larger shifts
weakens, but the differences are not significant. This conclusion is consistent with that of
Lucas and Saccucci (1990). When p = 0.2, the monitoring performance is excellent for both
larger and smaller shifts. Therefore, in the control chart simulation process in Section 3, we
select p = 0.2 as the parameter.

5. Computational cost

An additional practical concern in the design of nonparametric control charts is their com-
putational feasibility, especially in high-dimensional or large-sample settings. The proposed
SGLGEWMA chart involves repeated eigen-decompositions and ADMM iterations to obtain
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Table 8. Average runtime (seconds) per replication under ARLy = 200, with 17 = 0.3, 1, = 0.025,p =
0.2.

Case 1:n = 800, n* = 600

p 2 5 10 15 25 35 50

t 0.134 0.306 0.888 1.675 4.517 7913 15.397
Case 2:p = 10,n* = 600

n 300 400 500 600 700 800 900
t 0.843 0.853 0.861 0.870 0.881 0.888 0.906
Case3:p = 10,n = 800

n* 300 400 500 600 700 800 900
t 0.869 0.871 0.882 0.888 0.891 0.899 0.903

sparse full-rank covariance estimates, which could raise concerns about scalability. We con-
ducted additional experiments under the setting A; = 0.3, 1, = 0.025, p = 0.2 and the target
ARL( = 200. Table 8 reports the average runtime (in seconds) per replication. The results
show that (i) runtime increases moderately with the data dimension p (e.g., from 0.13s
at p = 2 to about 15.4s at p = 50), (ii) the effect of enlarging Phase I sample size n or
Phase II sample size n* is relatively minor (remaining below 1s per replication), and (iii)
the computational cost remains well within practical feasibility.

The results show that the majority of computational time is spent on solving the ADMM
subproblems. As reported in Danaher et al. (2014), the worst-case computational complexity
is O(p®), primarily due to repeated eigenvalue decompositions. To address scalability, one
promising direction is block-wise ADMM, where the estimated inverse covariance matrices
Q are block-diagonal with R blocks, each of size p, (Z‘fz1 pr = p), reducing the complexity
to 3L, 0.

Despite a non-negligible computational cost, particularly in high-dimensional settings,
our empirical evaluation demonstrates that the method remains practical for moderate val-
ues of p. For real-time SPM applications, we recommend employing efficiency-enhancing
strategies such as block-wise ADMM or parallel implementations to further mitigate the
computational overhead.

6. Case study
6.1. Demonstration of the proposed monitoring scheme

In this subsection, we generate simulated data for Phase I observations under IC condi-
tions (n = 500) and Phase II observations under OC conditions #* = 30 to demonstrate the
proposed monitoring scheme. IC observations are drawn from a multivariate Poisson distri-
bution with p = 10 (simulated using a Gaussian copula model), with marginal parameters
u x 15 (u = 2). The OC observations come from a multivariate Poisson distribution with
the same marginal parameters under Scenario I, and the variance elements shifting from 1
to 1 4+ 0, where 9 is set to 0.6.

As described in the preceding sections, the monitoring is divided into two phases: Phase
I and Phase II. In Phase I, we project the observed n p-dimensional IC data onto a Euclidean
space of smaller or equal dimension. Then, using the projected coordinates, we obtain the
control limit via a simulated search method. In Phase II, we project the n*p-dimensional OC
data onto the coordinate axes determined in Phase 1. We calculate the EWMA statistic under
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Table 9. Demonstration of the proposed monitoring scheme based on simulated data.

Y R
Phase i N %) Y10 n p) o w;
Phase | 1 1 3 2 1.700 0.973 1.094 2.574
2 5 4 1 0.201 —1.314 —2.780 16.262
3 1 1 3 0.662 1.286 1.328 16.432
4 7 4 2 1.870 —1.805 —3.020 44714
5 2 1 3 0.334 —0.610 —0.789 42.025
498 1 3 2 —1.612 —0.730 —0.461 90.088
499 3 2 1 —0.611 —1.260 —0.439 74.594
500 3 2 1 —0.735 —0.690 —0.617 70.726
Phase Il 1 1 0 2 —1.448 0.264 0.480 6.945
2 0 1 2 1.380 0.383 0.831 36.409
3 2 1 1 —0.823 —0.314 0.199 25.035
4 4 4 7 —-1.217 2177 —0.517 67.054
5 2 8 7 1.133 3.122 0.187 93.842
6 2 4 1 —0.971 —0.095 —1.252 98.340
7 0 2 0 0.406 2.218 1.823 113.998
8 2 2 3 —0.016 —0.698 0.394 87.180
9 3 1 3 —0.122 —0.028 3.699 151.785*
10 6 1 4 2444 —1.010 —2.036 154.346*
11 4 1 0 —0.629 —2.454 —2.670 170.168*
12 0 4 0 —1.320 0.382 0.681 179.798*
13 5 0 1 0.744 —3.958 —0.253 175.785*
14 4 0 1 0.513 —1.868 —1.895 300.408*
15 0 4 2 0.897 0.955 0.841 236.955*
29 0 4 2 —1.011 3.301 2.601 174.982*
30 2 3 0 1.063 —0.456 0.500 159.935*

the Sparse Group Lasso penalty for the Phase II projected sample and compare it with the
control limit & determined in Phase I. The steps are as follows.

(1) Calculating distances and centralization matrix: Calculate the Euclidean distance
squared matrix D59 500 for Phase I data, and construct the Gower centralization matrix
G based on D;

(2) Principal coordinate analysis: Perform eigenvalue decomposition on G, extract the
eigenvectors corresponding to the eigenvalues that meet the conditions, and obtain the
principal coordinate matrix Rsox10;

(3) Determining the control limit: Construct the EWMA statistic based on Rsp9x 10, and
obtain the control limit & (h = 137.15) through Monte Carlo simulation;

(4) Calculating the Phase II projection: For the Phase II data Y*, calculate its distance
from the Phase I samples D%, 5, and construct the Gower normalization matrix G*,
projecting G* onto the main coordinate axes determined in Step (2) to obtain R3; 45

(5) Calculating monitoring statistics and triggering an alarm: Calculate the EWMA statistic
wj using R*. If w}> h, it is considered an outlier, and an alarm is triggered.

Table 9 shows the data during the monitoring process. Due to space limitations in the
paper, the data for y3 ~ y9 and r3 ~ r9 have been omitted. * indicates an OC signal, where
w; > h (137.15).

The monitoring process of the results in Step (5) is shown in Figure 10, where the first
500 samples are IC and the last 30 data points are OC (separated by a red dashed line). The
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Figure 10. The monitoring process during Phase | and Phase Il based on simulated data.

control limit h = 137.15 for this situation was obtained in the simulation in Section 3. As
shown in Table 9 and Figure 10, in Phase I, all monitoring statistics are below the control
limit h, and no alarms occur; in Phase II, at the 9th observation, the control chart triggers
an alarm, and there are a total of 18 monitoring statistic values above the control limit. This
result is not significantly different from the simulation results in Table 2.

6.2. lllustration : grinding processes in wafer semiconductor manufacturing

In this subsection, we will use grinding process data from wafer semiconductor manufac-
turing to demonstrate the proposed control chart. During the grinding process, saw marks
are removed from the wafer, and variations in thickness are also reduced. J. Li et al. (2013)
conducted preliminary research on this issue, and subsequently (Adegoke et al., 2022; Kim
et al,, 2019) also used this data set to evaluate the performance of the charts they proposed.
The wafer grinding process is primarily characterized by five variables: total thickness
variation (Y1), total indicator reading (Y>), on-site total indicator reading (Y3), bow (Yy),
and warp (Y5). Any deviation of these variables beyond their specified tolerance limits can
adversely affect the wafer grinding process, ultimately reducing the production yield of
semiconductors. Therefore, these variables must be closely monitored and kept IC during
production. The IC variance matrix (Z1c) and OC variance matrix (Xoc) for the grinding
process are estimated by J. Li et al. (2013). Specifically, £ic and Xoc are defined as follows:

1.30 0.46 0.51 0 0
046 130 053 0 0
2ic=1]051 053 130 O 01,
0 0 0 130 0
0 0 0 0 1.30

1.30 0.62 0.63 0 0
0.62 1.30 0.68 0 0
Yoc=1]063 0.68 1.30 0 0
0 0 0 1.30  —0.55
0 0 0 —-055 1.30
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We assume that the covariance matrix of the wafer grinding process changes from Xic to
Yoc, and only the covariance matrix is available, while the complete dataset is unavail-
able. To construct the control chart for Phase II, we generate n* = 600 observations from
a multivariate normal distribution with a mean vector of zero and the OC covariance matrix
2ocC.

Following the steps outlined in Section 2 and using the same parameter settings as in
Section 3, we obtain the control limits for the LGShewhart, RGEWMA, and SGLGEWMA
control charts as 21.1, 15.1, and 21.35, respectively. When ARLy = 200, the ARL; values of
the three control charts during OC periods are 131.47, 143.61 and 97.48, respectively, clearly
demonstrating that the proposed control chart provides better monitoring performance.

To better illustrate the comparison between the control charts, we have selected the OC
data from one simulation for display. In Figure 11, the red dots indicate the first detection of
an alarm signal. It can be seen that for this set of OC data, the proposed SGLGEWMA control
chart issued an OC signal at the 29th observation, while the LGShewhart control chart and
RGEWMA control chart issued OC signals at the 152nd and the 155th observation, respec-
tively. Additionally, the LGSheWhart control chart issued 6 alarms, the RGEWMA control
chart issued 8 alarms, and the SGLGEWMA control chart issued 9 alarms. In summary, the
proposed control chart can effectively reduce losses caused by the delayed issuance of OC
signals.

7. Summary and future prospects
7.1. Summary

With the development of industrial and big data technologies, new techniques are constantly
being applied to quality control in industrial settings. During production processes, a large
amount of data is collected, which is often highly complex. Therefore, how to effectively mon-
itor the quality of such complex data has become a hot topic in current research. In most
cases, these data exhibit a wide variety of data types, high data dimensions, and unclear data
correlations. Under such circumstances, the assumption of multivariate normality is often
invalid, necessitating the establishment of multivariate nonparametric control charts.

Regardless of whether the data variables are continuous, discrete, or a mixture of contin-
uous and discrete, the proposed control charts can effectively monitor the covariance matrix
of these complex data variables and alert them promptly to fluctuations. Our method first
projects the IC data collected in Phase I into a Euclidean space of the same or lower dimen-
sion. Using the projected coordinate data, we calculate the approximate Alt’s likelihood ratio
EWMA statistic based on the Sparse Group Lasso penalty. Next, control limits that satisfy
a specific ARLy are obtained through Monte Carlo simulation searches. Individual observa-
tions from Phase II are then projected onto the principal coordinates determined in Phase
I, and the Alt’s likelihood ratio EWMA statistic based on the Sparse Group Lasso penalty is
similarly calculated. This statistic is compared with the control limit, and a shift is detected
if it exceeds the control limit.

The results of the simulation statistics indicate that the proposed SGLGEWMA control
chart can effectively monitor covariance matrix shift and outperforms the RGEWMA con-
trol chart based on Ridge penalty (Kim et al., 2019) and the LGShewhart control chart based
on Lasso penalty (Adegoke et al., 2022) in monitoring Scenario I and Scenario I1I shifts. Addi-
tionally, the study found that, compared to the control chart based on the Ridge design, the
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Figure 11. The control charts detection of grinding process data.

proposed control chart performs better in monitoring when the dimension increases. In the
sensitivity analysis, the effects of the penalty term tuning parameters 4;, A, and the smooth-
ing parameter p on the monitoring performance of the control chart were investigated. It was
found that a smaller smoothing parameter can better monitor small shifts but may weaken
the monitoring of large shifts. In the case study, the effectiveness of the proposed control chart
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is validated through an example of the semiconductor wafer grinding process, and compared
with two other control charts. The results demonstrated that the proposed control chart has
better monitoring performance and issues alarms more quickly.

7.2. Future prospects

Since the Euclidean space projections in the proposed control chart are all based on the IC
data from Phase I, although the control charts provide better monitoring performance as
the dimension increases, sufficient data are still required to ensure that the collected data
adequately represent the overall distribution, thereby achieving stability and accuracy. How
to effectively monitor a small amount of data, or even data volume less than the dimension,
is a topic worthy of further research.

Additionally, to obtain a full-rank sparse estimate of the covariance matrix after sample
projection, we employ the ADMM algorithm. While effective, this algorithm has high time
complexity and lacks an explicit solution like that of Ridge penalty-based methods, resulting
in longer code execution times. Developing a more efficient algorithm may be a worthwhile
research direction.

The proposed control chart performs better in Scenario I and Scenario III under Euclidean
distance, but its performance under Scenario II is generally average. It may be worth explor-
ing optimizations to the control chart or using control charts with different structures to
monitor this type of shift.
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