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ABSTRACT
The tail dependence coefficient measures extremal dependence
between two random variables. In this note, we investigate the tail
dependence of a bivariate skew normal triangular array with equal
skewness and varying correlation coefficients {ρn, n ≥ 1} satisfying the
Hüsler-Reiss condition via a redefined sequential tail dependence coef-
ficient. For more detailed insights, the convergence rate to the sequen-
tial tail dependence coefficients is also established under a refined
Hüsler-Reiss condition. Numerical experiments are conducted to illus-
trate the theoretical results.
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1. Introduction

Quantifying and understanding tail dependence of a model is important in statistic mod-
elling of multivariate extremes and finds significant application in risk measurement
(Embrechts et al., 2002). For a bivariate random vector (X,Y), a natural and classical measure
of extremal dependence is the tail dependence coefficient (Hult & Lindskog, 2002, Definition
2.3). Assuming that (X,Y) hasmarginal distribution functions F1(x) and F2(y), the upper tail
dependence coefficient χU of (X,Y) is defined as

χU = lim
u↑1 P

(
Y > F←2 (u) |X > F←1 (u)

)

provided the limit exists, where F←(u) := inf{s ∈ R | F(x) ≥ u} for all u ∈ (0, 1) is the
generalized inverse of F. Similarly,

χL = lim
u↓0 P

(
Y ≤ F←2 (u) |X ≤ F←1 (u)

)
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is referred to as the lower tail dependence coefficient. Under the assumption that F1 and F2
are continuous, they are equivalent to

χU = lim
t↓0 χU

t := lim
t↓0

1
t
P (1− F1(X) ≤ t, 1− F2(Y) ≤ t) , (1)

and

χL = lim
t↓0 χL

t := lim
t↓0

1
t
P (F1(X) ≤ t, F2(Y) ≤ t)

respectively. The tail dependence coefficient, dating back to Sibuya (1960), is also known as χ

dependence measure in Coles et al. (1999). The upper tail dependence coefficient measures
the probability that one variable is extremely large given that another random variable is
large. It captures the ability of distributions to generate joint extremes. Generally, (X,Y) is
said to exhibit asymptotic upper tail dependence if χU > 0. The trivial values χU = 0 and
χU = 1 indicate, respectively, asymptotic independence and full dependence in the upper
tail. Concepts corresponding to the lower tail are defined analogously.

The derivations and analytic computations of tail dependence coefficients for specific fam-
ilies of distributions have received much attention in recent years. Sibuya (1960) appears as
an incipient work in this field which investigated the asymptotic independence property of
bivariate normal distributions with constant correlation coefficients. Following this work, the
closed-form expression of tail dependence coefficients of many classical or constructed dis-
tribution families has been established in the literature, including Aleiyouka et al. (2017),
Banachewicz and van Der Vaart (2008), Engelke et al. (2019), Fung and Seneta (2010),
Hult and Lindskog (2002), Hammerstein (2016), Ling and Peng (2015), Padoan (2011),
Schmidt (2002), and Sepanski (2020). Although the tail dependence coefficient can indi-
cate whether a distribution is asymptotically dependent, practical applications may require
more than just knowing this limit. For more detailed insights, it is often necessary to fur-
ther investigate the convergence rate of χU

t to its limit χU . This issue was first addressed by
Ledford and Tawn (1996), where they examined the asymptotic convergence behaviour of
the tails in bivariate extreme value distributions, including Clayton and Morgenstern dis-
tributions. Since this pioneering work, subsequent studies have investigated the decay rate
for various distribution families. For example, see Engelke et al. (2019), Heffernan (2000),
Hashorva (2010, 2012), and Lao et al. (2023).

The above studies investigated the tail properties of distributions with static and constant
distribution parameters. However, many previous studies have provided empirical evidence
of time-varying dependence structures among financial assets, for example, Christoffersen
et al. (2018) and Guegan and Zhang (2010). Data in finance and insurance often cover a
long time period and the tail dependence structure of economic factorsmay be time-varying.
Using dynamicmodelswhose tail dependence depends on the level of themodel’s parameters
can be one effective mean to capture these characteristics, and become a popular approach
for tail risk modelling in asset investment. For recent work, see Fortin et al. (2023), Ito
and Yoshiba (2025), and Zhang (2021). To study the tail dependence property of models
with varying tail dependence structure is a key prerequisite for correct application of models.
Recently, Hu et al. (2022) considered the asymptotic tail dependence property of a bivariate
Hüsler-Reiss model with parameter depending on n in terms of a tail dependence function.
Specifically, for the bivariate normal triangular array {(ξni, ηni), 1 ≤ i ≤, n ≥ 1} with stan-
dard normal marginal distribution functions �(x) and correlation coefficient {ρn, n ≥ 1} of
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(ξni, ηni), 1 ≤ i ≤ n satisfying the so-called Hüsler-Reiss condition (Hüsler & Reiss, 1989)

λn = (1− ρn) log n→ λ ∈ [0,∞] as n→∞, (2)

they obtained the limit upper tail dependence function of the sequence (ξn1, ηn1),n ≥ 1 given
by

χU(x, y) = lim
n→∞ nP

(
1−�(ξn1) ≤ x

n
, 1−�(ηn1) ≤ y

n

)
, x, y > 0, (3)

and further established the convergence rates to the limit. The quantity in (3) allows to inves-
tigate the tail dependence properties of random vectors with parameters that depend on n,
whereas χU

t defined in (1) is not applicable in this scenario.
The bivariate skew normal distributions introduced in Azzalini and Valle (1996) have

received considerable attention both in theoretical studies and applied studies for its abil-
ity to model asymmetry in risk measurement. A random vector (X,Y) follows a bivariate
skew normal distribution SN(α,R) if it has the density

f (x) = 2φ2(x,R)�(α�x), x = (x, y)� ∈ R
2,

whereα = (α1,α2)
� ∈ R

2 is the skewness parameter vector (the symbol�denotes the trans-
pose operator of a vector), and φ2(x,R) denotes the density function of a bivariate normal
distribution with mean 0 and correlation matrix

R =
(

1 ρ

ρ 1

)
, −1 < ρ < 1.

The asymptotic tail dependence properties of bivariate skew normal distributions were
discussed in Bortot (2010). Fung and Seneta (2016) showed that the bivariate skew nor-
mal distribution with equal skewness parameters is tail independent and χL

t admits a
regularly varying behaviour. Recently, Beranger et al. (2019) proved that the extended
skew normal distribution, which includes the bivariate skew normal distribution as a spe-
cial case, is also asymptotic independent in the upper tail. Moreover, following Hüsler
and Reiss (1989), they considered an independent bivariate skew normal distributed tri-
angular array {(Xni,Yni), 1 ≤ i ≤ n, n ≥ 1} with correlation coefficients ρn and skewness
parameters depending on n. Under the Hüsler-Reiss condition and an assumption on the
increasing rate of asymmetry, Beranger et al. (2019) established the limit distribution of nor-
malized maxima of {(Xni,Yni), 1 ≤ i ≤ n, n ≥ 1} and formulated the upper tail dependence
coefficient through the limit extremal distribution.

In this paper, we are interested in the sequential tail dependence coefficients of bivariate
skew normal triangular array with correlation coefficients {ρn, n ≥ 1} satisfying the Hüsler-
Reiss condition. Similarly to Beranger et al. (2019) but particularly, for fixed n, we assume
the joint density function of (Xni,Yni), 1 ≤ i ≤ n is given by

fn(x,α,Rn) = 2φ2(x,Rn)�(α�x), x = (x, y)� ∈ R
2, (4)

where α = (α,α)� ∈ R
2 and

Rn =
(

1 ρn
ρn 1

)
, −1 < ρn < 1.

Supposing the correlation coefficient {ρn, n ≥ 1} satisfies the Hüsler-Reiss condition (2),
we investigate the asymptotic tail dependence of {(Xni,Yni), 1 ≤ i ≤ n, n ≥ 1} through the



4 S. HU ET AL.

sequential tail dependence coefficient defined similarly to (3). Since the index i does not play
a role in the asymptotic analysis of the tail dependence structure, without loss of generality,
we omit the sub-index i in the following and write (Xn,Yn) to represent a generic pair from
the n-th row of the array. Hence, we define the sequential upper tail dependence coefficient
as

χU = lim
n→∞χU

n := lim
n→∞ nP

(
1− Fωn(Xn) ≤ 1

n
, 1− Fωn(Yn) ≤ 1

n

)
, (5)

and the sequential lower tail dependence coefficient by

χL = lim
n→∞χL

n := lim
n→∞ nP

(
Fωn(Xn) ≥ 1

n
, Fωn(Yn) ≥ 1

n

)
,

if the limits exist. Here Fωn represents the common marginal distribution function of Xn
and Yn, which follows a univariate skew-normal distribution characterized by the skewness
parameter ωn (see (6)). The specific expressions of χU and χL are derived, and the conver-
gence rates ofχU

n toχU are established under the refinedHüsler-Reiss conditions. Compared
with the asymptotically independent bivariate skew normal distribution with equal skewness
and constant correlation coefficients ρ, this newmodel has a wider region of tail dependence
which improves the ability of bivariate skew normal distribution to model tail dependence.
We remark that we only require an assumption on the correlation coefficient {ρn, n ≥ 1}
in our model, differently from the model considered in Beranger et al. (2019), where the
absolute values of skewness parameters are assumed to tend to infinity additionally.

The organization of this paper is as follows. In Section 2 we present the main results.
A numerical study provided in Section 3 illustrates the asymptotic behaviour of χU

n . All
auxiliary lemmas and proofs are deferred to Section 4.

2. Main results

In the following, let �(x) = 1−�(x) and φ(x) denote the survival function and density
function of standard normal distribution, respectively. Recall that for each n ≥ 1, (Xn,Yn)

denotes a typical observation from the n-th row of a triangular array of bivariate skew normal
random variables with varying correlation ρn. Thus, while we use the notation {(Xn,Yn), n ≥
1} for simplicity, the underlying structure is a triangular array. We now state the main results
of this paper.

Theorem 2.1: Let {(Xn,Yn), n ≥ 1} be a bivariate skew-normal distributed random vec-
tor sequence with density function given by (4), where {ρn, n ≥ 1} satisfies the Hüsler-Reiss
condition (2). Assume further that {ρn, n ≥ 1} is bounded away from−1 when λ = ∞. Then

χU =
{
2�(
√

λ), α > 0,
2�
(√

λ(1+ 4α2)
)
, α < 0.

Remark 2.1: In Theorems 2.1 and 2.5, we require the sequence {ρn, n ≥ 1} to be bounded
away from −1 when λ = ∞ to ensure that the skewness parameters {ωn, n ≥ 1} of the
marginal skew normal distributions of {(Xn,Yn), n ≥ 1} stay bounded away from zero. This
is essential for applying the expansion of the marginal tail distribution {Fωn(·), n ≥ 1} from
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Lemma 4.2. The boundedness condition guarantees the correct comparison of convergence
orders in the expansion and underpins the validity of the analysis.

Remark 2.2: Let {(Xni,Yni), 1 ≤ i ≤ n, n ≥ 1} be an independent bivariate skew-normal tri-
angular array with the density function given in (4), and it follows from Theorem 2.1 and
the equivalence between the tail dependence function and normalized sample maxima (cf.
Resnick, 2008, Chapter 5) that

P
(
max
1≤i≤n

1
1− Fωn(Xni)

≤ n, max
1≤i≤n

1
1− Fωn(Yni)

≤ n
)
→−2− χU ,

as n→∞. This indicates that, under the Hüsler-Reiss condition, the extremes in the
triangular array may exhibit asymptotic extremal dependence.

Remark 2.3: Fung and Seneta (2016) show that the tail of bivariate skew-normal distri-
bution with identical skewness coefficients and a constant correlation coefficient ρ ∈ (0, 1)
is asymptotically independent. Theorem 2.1 demonstrates that, by introducing the Hüsler-
Reiss condition, the bivariate skew normal model with n-varying parameters can capture a
wider range of tail dependence structures. Specifically, depending on the value ofλ, themodel
can exhibit either asymptotic dependence or asymptotic independence in the tails.

The lower sequential tail dependence coefficient is determined by the upper sequential tail
dependence coefficient, noting that fn(x,α,Rn) = fn(−x,−α,Rn) for the density function of
(Xn,Yn) given by (4). The corresponding result for the lower tail is formalized in the following
theorem, and its proof, being analogous to that of Theorem 2.1, is omitted.

Theorem 2.2: Assuming the conditions of Theorem 2.1 hold, then

χL =
{
2�
(√

λ(1+ 4α2)
)
, α > 0,

2�(
√

λ), α < 0.

Remark 2.4: If ρn ≡ ρ ∈ (−1, 1), then the Hüsler-Reiss condition (2) holds with λ = ∞,
and it hence follows from Theorem 2.1 that χU = 0, coinciding with the result provided
by Bortot (2010).

Remark 2.5: The sequential upper tail dependence coefficient of bivariate skew normal dis-
tribution with α > 0 is identical to that of the Hüsler-Reiss distribution (Hu et al., 2022,
Theorem 2.1), i.e., the bivariate Gaussian distribution with correlation coefficient ρn. It does
not rely on the value of α in this case.

Theorem 2.3: For λ ∈ (0,∞), assume the conditions of Theorem 2.1 hold.

(1) If α > 0, assuming further that log n
log log n (λn − λ)→ γ ∈ R as n→∞, then

log n
log log n

(χU
n − χU)→

(√
λ

2
− γ√

λ

)
φ
(√

λ
)
.
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(2) If α < 0, assuming log n
(log log n)2 (λn − λ)→ γ ∈ R as n→∞, then

log n
(log log n)2

(χU
n − χU)→ 1

4
�
(√

λ(1+ 4α2)
)
− γ√

λ

√
1+ 4α2φ

(√
λ(1+ 4α2)

)
,

where χU is given by Theorem 2.1.

Theorem 2.4: For λ = 0, assuming the conditions of Theorem 2.1 hold and further,
λn log log n→∞ as n→∞, then for sufficiently large n,

χU
n = χU −

√
2λn
π

[1+ o(1)]

when α > 0, and

χU
n = χU −

√
2
π

√
(1+ 4α2)λn [1+ o(1)]

when α < 0, where χU = 1 as given by Theorem 2.1.

Theorem 2.5: For λ = ∞, assuming the conditions of Theorem 2.1 hold and further,
λn/ log log n→ 0 as n→∞, then for sufficiently large n,

χU
n =

√
2
π

1√
λn

exp
(
−λn

2

)
[1+ o(1)]

when α > 0, and

χU
n =

√
2
π

1√
(1+ 4α2)λn

exp
[
− (1+ 4α2)λn

2

]
[1+ o(1)]

when α < 0.

Remark 2.6: When ρn ≡ ρ, the random vector (Xn,Yn) satisfies the Hüsler-Reiss condi-
tion (2) for λ = ∞. However, the assumption of Theorem 2.5 does not hold in this case, and
therefore the expansions of χU

n for ρn ≡ ρ can not be obtained from Theorem 2.5. Instead,
the convergence rate for χU

n can be derived from Fung and Seneta (2016), as given in the
following.

(1) If α > 0, we have that as n→∞,

χU
n ∼ n−

1−ρn
1+ρn

1+ ρn

2

√
1+ ρn

1+ ρn
(π log n)−

ρn
1+ρn .

(2) If α < 0, we have that as n→∞,

χU
n ∼ −n−β2

n
(−2πωn)

β2
n√

πβn(1+ β2
n)

2 (log n)β
2
n− 1

2 ,

where

ωn = α(1+ ρn)√
1+ α2(1− ρ2

n)
, βn = −

√
(1− ρn)[1+ 2α2(1+ ρn)]

1+ ρn
. (6)
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Remark 2.7: Theorems 2.3–2.5 and Remark 2.6 show that the positive skewness parameter
α > 0 has little impact on the convergence rate, while under otherwise identical conditions,
the convergence of χU

n to χU is faster when α < 0.

Remark 2.8: The parameter λ in the Hüsler-Reiss condition characterizes the rate at which
the correlation coefficients {ρn, n ≥ 1} converge to 1, and this convergence rate determines
the form of the tail dependence. Specifically, we have the following results.

(1) When λ ∈ (0,∞), we are in the general Hüsler-Reiss regime of intermediate or partial
extremal dependence. The components are neither perfectly dependent nor completely
independent in the tails. Instead, they exhibit a non-trivial probability of joint extremes.

(2) When λ = 0, it means that ρn→ 1 sufficiently fast as n→∞, indicating perfect
sequential tail dependence, that is the sequential tail dependence coefficient equals 0.

(3) When λ = ∞, the sequence of correlations {ρn, n ≥ 1} is either constant or still tends to
1, but does so at a slow rate. In this case, the limiting distribution behaves as if the com-
ponents are asymptotically independent in the extremes, resulting in a tail dependence
coefficient of χU = 0.

Moreover, the rate that λn converges to λ controls the rate at which the scaled joint tail
probability χU

n converges to its limit χU , as seen in Theorems 2.3–2.5.

3. Numerical analysis

In this section, we present a numerical study, which is done inR, to illustrate the behaviour of
χU
n in the framework of bivariate n-varying skew normal distribution defined in (4), with ρn

satisfying the Hüsler-Reiss condition. To show the convergence behaviour of χU
n to its limit

χU , we calculate the values of χU
n and χU of SN(α,Rn)with finite n under the following three

settings and observe the difference between χU
n and χU :

(i) (a) ρn = 1− λ/ log n, λn = λ with λ ∈ (0,∞);
(b) ρn = 1− λ/ log n− 1/[2(log n)2], λn = λ+ 1/(2 log n) with λ ∈ (0,∞);

(ii) (a) ρn = 1− 1/(log n)2, λn = 1/ log n with λ = 0;
(b) ρn = 1− 1/(n log n), λn = 1/n with λ = 0;
(c) ρn = 1− 1/(exp(n) log n), λn = exp(−n) with λ = 0;

(iii) ρn ≡ ρ ∈ (−1, 1) implying λ = ∞.

For case (i) with λ = 0.5, 1, 2, Figures 1–2 present the values of χU
n and χU for the skew-

normal distribution SN(α,Rn), where the skewness parameter α takes the value 0.8, 0.5, 0.25
and −0.8,−0.5,−0.25. The figures show that smaller λ leads to stronger tail dependence.
When α > 0 and other parameters are fixed, despite the skewness parameter differs, the
model’s χU

n converges to the same limit. In contrast, when α < 0, the parameter α has a
significant impact on the value of χU

n . This is consistent with the conclusion in Theorem 2.1:
when α > 0, χU is independent of α, whereas when α < 0, χU is a function of α and it
decreases when α decreases. Given α > 0, the faster λn converges to λ, the faster χU

n con-
verges to χU . As illustrated in the figure, the convergence is faster when λn = 1− λ/ log n.
On the contrary, when α < 0, the convergence rate of χU

n is insensitive to the changes in λn
in Figure 2. In addition, for α < 0, the convergence rate of χU

n is faster when α is smaller,
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Figure 1. The values of χU
n for SN(α,Rn) with α = 0.5, 1, 3 are plotted against n on a logarithmic scale

for n = 10, 11, . . . , 106 (left panel) and n = 10, 11, . . . , 105 (right panel). Different rows display results
for varying values of λ. The left and right panels respectively illustrate the results for ρn = 1− λ/ log n
and ρn = 1− λ/ log n− 1/[2(log n)2]. The horizontal lines represent the true limiting values of χU =
2�(
√

λ), which are, from the top row to the bottom row, 0.4795, 0.3173, and 0.1573, respectively.

supporting the conclusion in Theorem 2.3. Moreover, it is observed that when α < 0 and
n is large, χU

n oscillates as it converges to the limit. This occurs because χU
n is a sequence,

and when n is sufficiently large, the quantiles of the univariate skew-normal distribution at
1− 1/n behave as a step function.
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Figure 2. The values of χU
n for SN(α,Rn) with α = −0.5,−1,−3 are plotted against n on a logarithmic

scale forn = 10, 11, . . . , 106 (left panel) andn = 10, 11, . . . , 105 (right panel). Different rowsdisplay results
for varying values of λ. The left and right panels respectively illustrate the results for ρn = 1− λ/ log n
and ρn = 1− λ/ log n− 1/[2(log n)2]. The horizontal lines represent the true limiting values of χU =
2�(

√
λ(1+ 4α2)), which are, from the top row to the bottom row, (0.3173, 0.1138, 0), (0.1573, 0.0253, 0),

(0.0455, 0.0016, 0) for α = (−0.5,−1,−3), respectively.
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For case (ii), Figure 3 presents the values of χU
n and χU with different ρn, which converge

to one with various rates. Clearly, the convergence rate ofχU
n relies on the convergence rate of

ρn, where faster convergence rate of ρn results in faster convergence rate of χU
n . In addition,

when λ = 0, the convergence speed of χU
n decreases as α decreases, which is consistent with

the statement in Theorem 2.4.
For case (iii), we take ρn ≡ ρ = ±0.8,±0.5,±0.25. The simulation results for the skew-

normal distribution SN(α,Rn)with positive skewness parameter α = 0.8, 0.5, 0.25 and nega-
tive skewness parameter α = −0.8,−0.5,−0.25 are shown in Figures 4 and 5. With ρn fixed
to be a constant, the model coincides with the bivariate skew normal distribution consid-
ered in Fung and Seneta (2016). Figures 4-5 indicate that the decay rate of χU

n increases for
decreasing value of ρ, in line with the results given in Fung and Seneta (2016). Furthermore,
comparedwith themodels having positive ρn, the value ofχU

n formodels possessing negative
ρn converges more quickly.

Let χU
n be the second-order approximation of χU

n . Specifically,

(1) for λ ∈ (0,∞), when α > 0,

χU
n = χU + log log n

log n

(√
λ

2
− γ√

λ

)
φ
(√

λ
)
,

and when α < 0,

χU
n = χU + (log log n)2

log n

[
1
4
�
(√

λ(1+ 4α2)
)
− γ
√
1+ 4α2
√

λ
φ
(√

λ(1+ 4α2)
)]

;

(2) for λ = 0,

χU
n =

⎧⎪⎪⎨
⎪⎪⎩

χU −
√
2λn
π

, α > 0,

χU −
√

2
π

√
(1+ 4α2)λn, α < 0;

(3) for λ = ∞,

χU
n =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
2
π

1√
λn

exp
(
−λn

2

)
, α > 0,√

2
π

1√
(1+ 4α2)λn

exp
[
− (1+ 4α2)λn

2

]
, α < 0.

To validate the convergence rates of χU
n − χU to zero in Theorems 2.3–2.5, we calculate

the value of χU
n , χU

n and χU at n = 10, 11, . . . , 105 under the following setting:

(iv) (a) λ = 1, ρn = 1− λ/ log n− log log n/(log n)2, λn = λ+ log log n/ log n;
(b) ρn = 1− 1/[(log n)(log log n)0.8], λn = 1/(log log n)0.8, implying λ = 0;
(c) ρn = 1− (log log n)0.8/ log n, implying λ = ∞.

Note that the assumptions of Theorems 2.3–2.5 are satisfied respectively under this setting.
The performance of the first-order approximation χU and the second-order approxima-

tion χU
n is presented in Figure 6. As seen in the figure, in most cases, the second-order
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Figure 3. The values of χU
n for SN(α,Rn) with α = ±0.5,±1,±3 are plotted against n on a logarithmic

scale for n = 10, 11, . . . , 104. Different rows display results for varying values of ρn, which is, from top
to bottom, ρn = 1− 1/(log n)2, ρn = 1− 1/(n log n) and ρn = 1− 1/(exp(n) log n). The left and right
panels illustrate the result for positive and negative α, respectively. The horizontal lines show the true
limiting values of χU , specifically, χU = 1.

approximation is closer to the value ofχU
n than the first-order approximation.However, when

n is relatively small, χU
n may exhibit a larger difference from χU

n , as shown in the subplot in
the lower right corner of Figure 6. This is because the second-order approximation is derived
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Figure 4. The values of χU
n for SN(α,Rn) with α = 0.5, 1, 3 and ρn ≡ ρ = ±0.8,±0.5,±0.25 (imply-

ing λ = ∞) are plotted against n on a logarithmic scale for n = 10, 11, . . . , 200 (left panel) and n =
10, 11, . . . , 105 (right panel). The left and right panels illustrate the result for negative and positive ρn,
respectively. The horizontal lines show the true limiting values of χU , specifically, χU = 0.

under the condition that n approaches infinity. When the convergence rate of λn is slow and
n is small, the error might be significant, but as n increases, it tends to converge to the limit.

The simulation results illustrate that the bivariate skew-normal distribution with varying
correlation coefficients exhibits richer tail behaviour. Therefore, in practical applications, it
can more accurately describe the tail characteristics of the data.



STATISTICAL THEORY AND RELATED FIELDS 13

Figure 5. The values of χU
n for SN(α,Rn) with α = −0.5,−1,−3 and ρn ≡ ρ = ±0.8,±0.5,±0.25

(implying λ = ∞) are plotted against n on a logarithmic scale for n = 10, 11, . . . , 200. The left and right
panels illustrate the result for negative and positive ρn, respectively. The horizontal lines show the true
limiting values of χU , specifically, χU = 0.

4. Proofs

Let Fω and fω denote the distribution function and density function of a univariate skew
normal distribution with skewness parameter ω (shorted by SN(ω)). From (4) we know that
Xn

d= Yn and Xn follows univariate skew normal distribution with skewness parameter ωn,
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Figure 6. The values of χU
n , χU

n , and χU for the SN(α,Rn) are plotted against n on a logarith-
mic scale for n = 10, 11, . . . , 105. Different rows display results for varying values of ρn, which are,
from top to bottom, ρn = 1− λ/ log n− log log n/(log n)2, ρn = 1− (log n)−1(log log n)−0.8, ρn =
1− (log log n)0.8/ log n. The left and right panels illustrate the result for positive and negative α respec-
tively. The horizontal lines show the true limiting values of χU .
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with its density function given by

fωn(x) = 2φ(x)�(ωnx). (7)

To prove Theorem 2.1, we need to utilize the asymptotic expansion of the quantile func-
tion of a univariate skew-normal distribution with a n-varying correlation coefficient ρn.
The difficulty is that the quantile function of the skew-normal distribution does not have a
closed form. In Sections 3 and 4.2 (Eq. 16) of Fung and Seneta (2018), the authors derived
the asymptotic expansion of the quantile function for a skew-normal distribution with a con-
stant correlation coefficient, using regularly varying functions. In the following, we use the
similar method to prove the asymptotic expansion of the upper quantile of a skew-normal
distribution with a n-varying correlation coefficient.

We emphasize that the distinction in our lemma lies in the fact that our correlation coeffi-
cient ρn is variable, so as n changes, the distribution function of this univariate skew-normal
distribution also varieswithn. Therefore, whatwe actually obtain is the asymptotic expansion
of the quantile function for a sequence of skew-normal distribution functions. Let {xn, n ≥ 1}
be a sequence of positive numbers such that xn→∞ as n→∞. Next, we will first prove
a result similar to Corollary 1 in Fung and Seneta (2018), which gives an asymptotic closed
form expression of the quantile functions.

Lemma4.1: Consider the sequence {Gn(x), n ≥ 1}, where eachGn(x) is a positive, continuous,
and strictly increasing distribution function defined on [A,∞), with A>0. Let {un, n ≥ 1} be
a sequence of positive numbers such that un→ 1− as n→∞. Additionally, assume that there
exists a sequence of functions {yn(x), n ≥ 1} for which yn(un)→∞ and

yn(Gn(xn)) = xn [1+ O(η(xn))] (8)

holds for large n. Here,

η(x) = x−ρL(1/x),

with ρ ≥ 0 being a constant and L(x), x>0, a function that varies slowly at 0. Consequently,
η(xn)→ 0 as n→∞.

If Hn(x) is the inverse function of Gn(·), then
Hn(un) = yn(un)[1+ O(η(yn(un)))]

for large n.

Proof: Recall that Hn(x) is the inverse function of Gn(·). For any n ≥ 1 we have

Gn(Hn(un)) = un,

and thus

yn(Gn(Hn(un))) = yn(un). (9)

Moreover, note that un→ 1− implying Hn(un)→∞ as n→∞. By (8) and (9) we get

Hn(un)[1+ O(η(Hn(un)))] = yn(un) (10)
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for large n. It follows that Hn(un)
yn(un) → 1 as n→∞ and hence

lim
n→∞

η(Hn(un))
η(yn(un))

= 1 (11)

by the uniform convergence theorem of slowly varying function, cf., Proposition 0.5 of
Resnick (2008). Consequently, combining (10) and (11) leads to the desired conclusion. The
proof is complete. �

In the following lemma, we provide the asymptotic expansion of the tail distribution func-
tion for a univariate skew-normal distribution with a n-varying skewness parameter. This
conclusion will be used later in the proof of the quantiles of the univariate skew-normal
distributionswith n-varying skewness parameter in Lemma 4.3 and in the subsequent proofs.

Lemma 4.2: Let {αn, n ≥ 1} be a sequence of real numbers and [a, b] be a fixed finite interval
bounded away from zero. For the distribution function Fαn(x) of SN(αn), we have the following
results:

(1) if αn > 0 and αn ∈ [a, b] ⊂ (0,∞), then

Fαn(xn) =
√

2
π

e−
x2n
2

xn

[
1+ O

(
x−2n
)]

for large n;
(2) if αn < 0 and αn ∈ [a, b] ⊂ (−∞, 0), then

Fαn(xn) =
e−

(1+α2n)x2n
2

−παn(1+ α2
n)x2n

[
1+ O

(
x−2n
)]

for large n.

Proof: By integration by parts,

Fαn(xn) =
2φ(xn)�(αnxn)

xn

[
1+ αn

1+ α2
n

φ(αnxn)
�(αnxn)

x−1n − x−2n

]

− 2αn(3+ α2
n)

1+ α2
n

∫ ∞
xn

s−3φ(s)φ(αns) ds+ 6
∫ ∞
xn

s−4φ(s)�(αns) ds. (12)

For xn > 0, we have

0 <

∫ ∞
xn

s−3φ(s)φ(αns) ds <
1

1+ α2
n
φ(xn)φ(αnxn)x−4n (13)

and

0 <

∫ ∞
xn

s−4φ(s)�(αns) ds < φ(xn)�(αnxn)x−5n +
|αn|

1+ α2
n
φ(xn)φ(αnxn)x−6n . (14)
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Recall that

�(x) = φ(x)
x
[
1− x−2 + 3x−4 − 15x−6 + O(x−8)

]
(15)

for large x, cf. Castro (1987). In the case of αn ∈ [a, b] ⊂ (0,∞), we have xnφ(αnxn)→ 0
and �(αnxn)→ 1 as n→∞. Hence, it follows from (12)–(15) that for large n,

Fαn(xn) =
2φ(xn)�(αnxn)

xn

[
1− x−2n + o(x−2n )

] =
√

2
π

e−
x2n
2

xn

[
1+ O

(
x−2n
)]
.

Similarly, in the case of αn ∈ [a, b] ⊂ (−∞, 0), we have αnxn→−∞, and thus�(αnxn)→
0 as n→∞. By (12)–(15) we obtain

Fαn(xn) =
2φ(xn)�(αnxn)

xn

[
1+ αn

1+ α2
n

φ(αnxn)
�(αnxn)

x−1n + O(x−2n )

]

= e−
(1+α2n)x2n

2

−παn(1+ α2
n)x2n

[
1+ O

(
x−2n
)]

for large n. The proof is complete. �

Lemma 4.3: Let F←αn (x) denote the quantile function of SN(αn), where {αn, n ≥ 1} is a
sequence of real numbers, and [a, b] be a finite interval bounded away from zero for large n.We
have the following results:

(1) if αn > 0 and αn ∈ [a, b] ⊂ (0,∞), then for large n

F←αn

(
1− t

n

)
= √2 log n

[
1− 2 log t + logπ+ log log n

4 log n

− (log log n)2

32(log n)2
+ O

(
log log n
(log n)2

)]

uniformly for t ∈ [ε, 1] with ε > 0;
(2) if αn < 0 and αn ∈ [a, b] ⊂ (−∞, 0), then for large n

F←αn

(
1− t

n

)
=
√

2 log n
1+ α2

n

[
1− log t + log(−2παn)+ log log n

2 log n

− (log log n)2

8(log n)2
+ O

(
log log n
(log n)2

)]

uniformly for t ∈ [ε, 1] with ε > 0.

Proof: To show this lemma, we shall use Lemmas 4.1, 4.2 and strategy similar to that used
in Section 3 of Fung and Seneta (2018).
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For αn > 0, assume αn is bounded in the finite interval [a, b] ⊂ (0,∞). Similarly to Fung
and Seneta (2018), we take

yn(u) =
{− log[−π(1− u)2 log(1− u)]

}1/2 , u ∈ (0, 1) (16)

for n ≥ 1 to approximate the quantile function. Recall that xn→∞ as n→∞, and by
Lemma 4.2 and (16) we have

yn
(
Fαn(xn)

) = xn
[
1+ O

(
log xn
x4n

)]
. (17)

Let un(t) = 1− t/n, t ∈ [ε, 1] for ε > 0. Hence, un(t)→ 1− uniformly on [ε, 1] as n→∞.
By (17) and Lemma 4.1 we have

F←αn

(
1− t

n

)
= yn

(
1− t

n

)[
1+ O

(
log log n
(log n)2

)]

= √2 log n
[
1− 2 log t + logπ+ log log n

4 log n

− (log log n)2

32(log n)2
+ O

(
log log n
(log n)2

)]
(18)

uniformly for t ∈ [ε, 1] as n→∞.
Similarly, for αn < 0 and αn ∈ [a, b] ⊂ (−∞, 0), set

yn(u) =
{

2
1+ α2

n

[
− log

(
−2παn(1− u)

∣∣∣∣log 2(1− u)
1+ α2

n

∣∣∣∣
)]}1/2

, u ∈ (0, 1).

Using Lemma 4.2, we can verify that (17) holds for sufficiently large n such that Fαn(xn) <

(1+ b2)/2, which is feasible sinceFαn(xn)→ 0 asn→∞. Consequently, by arguments sim-
ilar to (18) we can show that the expansion of F←αn (1− t

n ) in the lemma for α < 0 holds
uniformly for t ∈ [ε, 1] and large n. The proof is complete. �

Proof of Theorem 2.1: Assume first that λ ∈ [0,∞). We will focus on the case where λ ∈
(0,∞), while the result for λ = 0 can be verified in a similar manner.

For λ ∈ (0,∞) and α > 0, set qn(t) = F←ωn(1− t
n ) and write qn = qn(1) when there is

no ambiguity. Since ωn→ 2α and 1− 1/n→ 1 in this case, we have qn→∞ as n→∞.
Hence, we can find an integer N ≥ 1 such that qn ≥ 1 for n ≥ N. For sake of simplicity,
assume qn ≥ 1 for alln ≥ 1, otherwisewe can set qn = max(qn, 1). This is reasonable because
we are more concerned with the limiting behaviour of the joint tail with sufficiently large n.
Recall that Xn

d= Yn ∼ SN(ωn). From the definition of χU
n we have

χU
n = nP

(
Xn ≥ qn,Yn ≥ qn

)
= n

∫ ∞
qn

P
(
Yn ≥ qn |Xn = s

)
dFωn(s)

=
∫ 1

0
P
(
Yn ≥ qn |Xn = qn(s)

)
ds. (19)
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With the density functions given by (4) and (7), we can write

P
(
Yn ≥ qn |Xn = qn(s)

) = ∫ ∞
qn

1√
1− ρ2

n
φ

(
t − ρnqn(s)√

1− ρ2
n

)
�(α(t + qn(s)))

�(ωnqn(s))
dt. (20)

Hence,

�

(
qn − ρnqn(s)√

1− ρ2
n

)
�(α(qn + qn(s)))

�(ωnqn(s))
≤ P

(
Yn ≥ qn |Xn = qn(s)

) ≤ �

(
qn−ρnqn(s)√

1−ρ2
n

)
�(ωnqn(s))

.

(21)
Combining (19) and the bounds in (21) yields

∫ 1

0
�

(
qn − ρnqn(s)√

1− ρ2
n

)
�(α(qn + qn(s)))

�(ωnqn(s))
ds ≤ χU

n ≤
∫ 1

0

�

(
qn−ρnqn(s)√

1−ρ2
n

)
�(ωnqn(s))

ds.

In the following we show that the upper bound and lower bound converge to the same limit.
Recall that for λ ∈ (0,∞), we have ρn→ 1 and ωn→ 2α > 0 as n→∞. Thus ωn is

bounded away from zero for large n. Hence, it follows from Lemma 4.3 that

qn − ρnqn(s)√
1− ρ2

n
→ log s

2
√

λ
+√λ, as n→∞

uniformly on [ε, 1] with ε > 0. Since ωnqn(ε) > 0, we have

sup
s∈[ε,1]

�

(
t−ρnqn(s)√

1−ρ2
n

)
�(ωnqn(s))

≤ 1
�(ωnqn(ε))

< 2,

and applying the Lebesgue dominated convergence theorem gives

lim
n→∞

∫ 1

ε

�

(
t−ρnqn(s)√

1−ρ2
n

)
�(ωnqn(s))

ds =
∫ 1

ε
�

(
log s
2
√

λ
+√λ

)
ds

= 2�(
√

λ)− ε�

(
log ε

2
√

λ
+√λ

)
−�

(
log ε

2
√

λ
−√λ

)
. (22)

Also, since �(ωnqn(s) > 1/2 holds uniformly for 0< s<1 when n is sufficiently large, it
follows that for any 0 < ε < 1, we have

∫ ε

0

�

(
t−ρnqn(s)√

1−ρ2
n

)
�(ωnqn(s))

ds ≤ 2
∫ ε

0
�

(
t − ρnqn(s)√

1− ρ2
n

)
ds ≤ 2ε. (23)

Combing (19)–(23) and by the arbitrariness of ε, we get

lim sup
n→∞

χU
n ≤ 2�(

√
λ).
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Analogously, by arguments similar to (22) and (23), it can be shown that

lim inf
n→∞ χU

n ≥ 2�(
√

λ),

which, combined with the limsup statement, proves the desired result.
Now we consider the case λ ∈ (0,∞) and α < 0. Let V be a half normal distributed

random variable with density function

fV(v) = √2/πe−v2/2, v > 0.

For given α and Rn, it was demonstrated in Azzalini and Valle (1996) that (Xn,Yn) can be
represented as

(Xn,Yn)
� d= δnV +

√
1− δ2nZn (24)

with

δn = (δn, δn)� =
(

α(1+ ρn)√
1+ 2α2(1+ ρn)

,
α(1+ ρn)√

1+ 2α2(1+ ρn)

)�
,

where Zn = (Zn1,Zn2)� is a bivariate normal distributed random vector with mean zero and
correlation matrix

�n =

⎛
⎜⎜⎝

1
ρn − α2(1− ρ2

n)

1+ α2(1− ρ2
n)

ρn − α2(1− ρ2
n)

1+ α2(1− ρ2
n)

1

⎞
⎟⎟⎠ .

Moreover, the random vector Zn is independent of V. By Theorem 2.3 in Loperfido (2002)
we know that min(Zn1,Zn2) ∼ SN(βn) with

βn = −
√

(1− ρn)(1+ 2α2(1+ ρn))

1+ ρn
,

and thus it follows from (24) and the definition of χU
n in (5) that,

χU
n = nP

(
δnV +

√
1− δ2nZn1 ≥ qn, δnV +

√
1− δ2nZn2 ≥ qn

)

= nE

[
P

(
Zn1 ≥ qn − δnV√

1− δ2n
,Zn2 ≥ qn − δnV√

1− δ2n

)]

= nE

[
P

(
min(Zn1,Zn2) ≥ qn − δnV√

1− δ2n

)]

= nE

[
Fβn

(
qn − δnV√

1− δ2n

)]
. (25)
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Noting that βn < 0, with arguments similar to those in the proof of Lemma 4.2, we can show
that for x>0,

2φ(x)�(βnx)x−1 + 2βn

1+ β2
n
φ(x)φ(βnx)x−2 − 2φ(x)�(βnx)x−3

< Fβn(x) < 2φ(x)�(βnx)x−1. (26)

Denote zn(v) = qn−δnv√
1−δ2n

. Since zn(v) > 0 for all v ∈ (0,∞) provided qn > 0, by (25) and (26)

we have

n(In,1 + In,2 − In,3) ≤ χU
n ≤ nIn,1, (27)

where

In,1 = 2
∫ ∞
0

φ(zn(v))�(βnzn(v))zn(v)−1fV(v) dv,

In,2 = 2βn

1+ β2
n

∫ ∞
0

φ(zn(v))φ(βnzn(v))zn(v)−2fV(v) dv

and

In,3 = 2
∫ ∞
0

φ(zn(v))�(βnzn(v))zn(v)−3fV(v) dv.

Next, we will calculate In,1, In,2 and In,3 separately. Using integration by parts gives

In,1 = −
√
2(1− δ2n)

3/2
√

πδn
q−2n exp

(
− q2n
2(1− δ2n)

)[
�

(
βnqn√
1− δ2n

)
fV(0)

+
∫ ∞
0

exp
(

δnqnv
1− δ2n

)
exp
(
− δ2nv2

2(1− δ2n)

)(
1− δnv

qn

)−1
kn(v) dv

]
, (28)

where

kn(v) = fV(v)

{[
δn

qn

(
1− δnv

qn

)−1
− v

1− δ2n

]
�(βnzn(v))− βnδn√

1− δ2n
φ(βnzn(v))

}
.

Considering that

1
1− δ2n

< 1+ 4α2, and |δn| + βnδnφ(0)√
1− δ2n

< −α
[√

(1+ 4α2)/2π+ 2
]

for large n such that qn > 1, we have that for v ∈ (0,∞),

|kn(v)| < fV(v)
{
(1+ 4α2)v− α

[√
(1+ 4α2)/2π+ 2

]}
.

Thus with the fact that δ < 0, we obtain

lim
n→∞

∫ ∞
0

exp
(

δnqnv
1− δ2n

)
exp
(
− δ2nv2

2(1− δ2n)

)(
1− δnv

qn

)−1
kn(v) dv

≤ lim
n→∞

∫ ∞
0

fV(v)
[
(1+ 4α2)v− α(

√
(1+ 4α2)/2π+ 2)

]
dv ≤ ∞.
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It follows from the dominated convergence theorem that

lim
n→∞

∫ ∞
0

exp
(

δnqnv
1− δ2n

)
exp
(
− δ2nv2

2(1− δ2n)

)(
1− δnv

qn

)−1
kn(v) dv = 0. (29)

Recall that ωn→ 2α < 0 for λ ∈ (0,∞) and thus ωn is bounded away from zero for large n.
Hence, using (28), (29), Lemma 4.3 and (1− δ2n)(1+ ω2

n) = 1, we have

In,1 = −2(1− δ2n)
3/2

πδn
�

(
βnqn√
1− δ2n

)
q−2n exp

(
− q2n
2(1− δ2n)

)
(1+ o(1))

= 2n−1
[
�

(
βnqn√
1− δ2n

)
+ o(1)

]
. (30)

Similarly,

In,2 = βn√
π(1+ β2

n)
2 n
−1(log n)−1/2 exp

[
− β2

nq2n
2(1− δ2n)

]
[1+ o(1)] (31)

and

In,3 = (n log n)−1
[
�

(
βnqn√
1− δ2n

)
+ o(1)

]
. (32)

Since δn→ 2α/
√
1+ 4α2, βn→ 0 and βnqn→−

√
λ as n→∞ by Lemma 4.3, combin-

ing (27), (30)–(32) gives the desired result.
Now we consider the case where λ = ∞. Supposing α > 0 and ρn is bounded away

from −1, then 0 < ωn < 2α and ωn is bounded away from zero for large n. Hence, for any
ε > 0, it follows from Lemma 4.3 that qn−ρnqn(s)√

1−ρ2
n
→∞ uniformly for s ∈ [ε, 1] as n→∞.

Consequently, by (17) and arguments similar to (22)–(23), we conclude that χU
n → 0 as

n→∞.
For α < 0, we have βn < 0, and it was shown in Capitanio (2010) that

√
2√

π|βn|(1+ β2
n)

φ

(
x
√
1+ β2

n

)
x−2 −

√
2(1+ 3β2

n)√
π|βn|3(1+ β2

n)
2φ

(
x
√
1+ β2

n

)
x−4

< Fβn(x) <

√
2√

π|βn|(1+ β2
n)

φ

(
x
√
1+ β2

n

)
x−2, (33)

for x>0. Note that δn < 0 and qn→∞ as n→∞, implying zn(v) > 0 for v ∈ (0,∞) and
large n. By arguments similar to those used in the proof of the case λ ∈ (0,∞) and α <

0, (19), (33) and Lemma 4.3 we have

n(Jn,1 − Jn,2) < χU
n < nJn,1, (34)

where

Jn,1 =
√
2√

π|βn|(1+ β2
n)

∫ ∞
0

φ

(
zn(v)

√
1+ β2

n

)
zn(v)−2fV(v) dv

=
√
2(1− δ2n)

1/2
√

π(1+ β2
n)

2
1
|βn|qn exp

(
− β2

nq2n
2(1− δ2n)

)
n−1[1+ o(1)] (35)
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and

Jn,2 =
√
2(1+ 3β2

n)√
π|βn|3(1+ β2

n)
2

∫ ∞
0

φ

(
zn(v)

√
1+ β2

n

)
zn(v)−4fV(v) dv

=
√
2(1+ 3β2

n)(1− δ2n)
3/2

√
π(1+ β2

n)
3

1
(|βn|qn)3 exp

(
− β2

nq2n
2(1− δ2n)

)
n−1[1+ o(1)]. (36)

Note that βn and δn are bounded and |βn|qn→∞ as n→∞. The desired result follows
from (34)–(36). The proof is complete. �

The proof of Theorems 2.3–2.5 requires higher-order expansions of the quantile of the
skew-normal distribution SN(αn). The following lemma provides a higher-order expansion
of the quantile function in Lemma 4.3. The proof is similar to that of Lemma 3.1 of Hu
et al. (2022) and is therefore omitted.

Lemma 4.4: Let F←αn (x) be the quantile function of the univariate skew normal distribution
SN(αn), and {αn, n ≥ 1} be a sequence of real numbers.

(1) If there exists a positive integer N such that αn ∈ [a, b] ⊂ (0,∞) when n>N, then as
n→∞,

F←αn

(
1− t

n

)
= √2 log n

[
1− log(π log n)

4 log n
+ log(π log n)− 2

8
(
log n

)2 −
(
log(π log n)

)2
32
(
log n

)2
]

− log t√
2 log n

[
1+ log t + log(π log n)− 2

4 log n

]
+ o

((
log n

)− 3
2
)

holds uniformly on t ∈ [1/ log n, 1].
(2) If there exists a positive integer N such that αn ∈ [a, b] ⊂ (−∞, 0) when n>N, then as

n→∞,

F←αn

(
1− t

n

)
=
√

2 log n
1+ α2

n

{
1− log(−2παn log n)

2 log n
+ log(−2παn log n)

2
(
log n

)2
−
[
log(−2παn log n)

]2
8
(
log n

)2 + 3α2
n + 1
4α2

n

1
(log n)2

}

− 1√
1+ α2

n

log t√
2 log n

{
1+ log t + 2[log(−2παn log n)− 2]

4 log n

}

+ o
((
log n

)− 3
2
)

holds uniformly on t ∈ [1/ log n, 1].
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Proof of Theorem 2.3: Consider the case α > 0. For s ∈ [0, 1], by (20) we have

P
(
Yn ≥ qn |Xn = qn(s)

)
= �

(
qn − ρnqn(s)√

1− ρ2
n

) [
�(ωnqn(s))

]−1

− 1√
1− ρ2

n

1
�(ωnqn(s))

∫ ∞
qn

φ

(
t − ρnqn(s)√

1− ρ2
n

)
�(α(t + qn(s))) dt

:= Kn,1(s)+ Kn,2(s). (37)

We will address these two parts separately in the following.
When α > 0, it follows from Lemma 4.4 that

qn − ρnqn(s)√
1− ρ2

n
= log s

2
√

λn
+√λn + log log n

4 log n

(
log s
2
√

λn
−√λn

)

+
(
log s

)2 + (logπ− 3λn − 2
)
log s

8
√

λn log n
+
√

λn(λn − logπ)

4 log n
+ o

(
1

log n

)

holds uniformly on s ∈ [1/ log n, 1]. Since qn−ρnqn(s)√
1−ρ2

n
→ log s

2
√

λ
+√λ as n→∞, expanding

�(
qn−ρnqn(s)√

1−ρ2
n

) at the point log s
2
√

λ
+√λ using the Taylor series with the Peano remainder, and

by the assumption that log n
log log n (λn − λ)→ γ we have

�

(
qn − ρnqn(s)√

1− ρ2
n

)
= �

(
log s
2
√

λ
+√λ

)
− φ

(
log s
2
√

λ
+√λ

)[(√
λn −

√
λ
)

+ log s
2

(
1√
λn
− 1√

λ

)
+ log log n

4 log n

(
log s
2
√

λn
−√λn

)

+ log s
2
√

λn

logπ− 3λn − 2+ log s
4 log n

+
√

λn(λn − logπ)

4 log n

+o
(

1
log n

)]
(38)

holds uniformly on s ∈ [1/ log n, 1].
Since ωnqn(s)→∞ holds uniformly on s ∈ [0, 1] as n→∞, from (15) we know that

�
(
ωnqn(s)

) = 1
4α

exp
[
4α2(1+ 2α2)λn

]
n−4α2

(π log n)2α
2− 1

2 s4α
2
(1+ o(1))

= o
(

φ

(
log s
2
√

λ
+√λ

)
1

log n

)
(39)
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holds uniformly on s ∈ [1/ log n, x]. Thus combining (38) with (39) gives

Kn,1(s) = �

(
qn − ρnqn(s)√

1− ρ2
n

) [
1−�(ωnqn(s))+ o

(
�(ωnqn(s))

)]−1

= �

(
log s
2
√

λ
+√λ

)
− φ

(
log s
2
√

λ
+√λ

)

×
{(√

λn −
√

λ
)
−
√

λn
[
log(π log n)− λn

]
4 log n

}

− (log s)φ
(
log s
2
√

λ
+√λ

)[(
1

2
√

λn
− 1

2
√

λ

)
+ log(π log n)− 3λn − 2

8
√

λn log n

]

− (log s)2

8
√

λn log n
φ

(
log s
2
√

λ
+√λ

)
+ o

(
1

log n
φ

(
log s
2
√

λ
+√λ

))

uniformly for s ∈ [1/ log n, 1].
For sufficiently large n, applying Mill’s inequality to Kn,2(s) we have �(x) ≤ φ(x)/x for

x>0. Note that for s ∈ [1/ log n, 1] we have

exp
[−α2qn(s)t

]
< 1, exp

(
−1
2
α2t2

)
< exp

(
−1
2
α2q2n

)
,

1
1+ t/qn(s)

< 1.

For t > qn, using Lemma 4.4 we get

|Kn,2(s)| ≤
∣∣∣∣∣ 1√

1− ρ2
n

1
�(ωnqn(s))

∫ ∞
qn

φ

(
t − ρnqn(s)√

1− ρ2
n

)
φ(α(t + qn(s)))

α(t + qn(s))
dt

∣∣∣∣∣
= 1

α
√
2π
√
1− ρ2

n

1
�(ωnqn(s))

exp
[
−1
2
α2q2n(s)

]
q−1n (s)

×
∫ ∞
qn

φ

(
t − ρnqn(s)√

1− ρ2
n

)
exp
[
−1
2
α2t2 − α2qn(s)t

] [
1+ t

qn(s)

]−1
dt

≤ 1
α
√
2π

1
�(ωnqn(s))

exp
{
−1
2
α2 [q2n(s)+ q2n

]}
q−1n (s)

= O
(
n−2α2

(log n)α
2−1/2) (40)

uniformly on s ∈ [1/ log n, 1].
In view of the expressions of Kn,1(s) and Kn,2(s) we obtain∫ 1

1
log n

P
(
Yn ≥ qn |Xn = qn(s)

)
ds−

∫ 1

1
log n

�

(
log s
2
√

λ
+√λ

)
ds

=
∫ 1

1
log n

[
Kn,1(s)−�

(
log s
2
√

λ
+√λ

)]
ds+

∫ 1

1
log n

Kn,2(s) ds

= −
{(√

λn −
√

λ
)
−
√

λn
[
log(π log n)− λn

]
4 log n

}
rn,0(λ)
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−
[(

1
2
√

λn
− 1

2
√

λ

)
+ log(π log n)− 3λn − 2

8
√

λn log n

]
rn,1(λ)

− 1
8
√

λn log n
rn,2(λ)+ O

(
n−2α2

(log n)α
2−1/2) ,

where rn,k(λ), k = 0, 1, 2 are given by

(i)

rn,0(λ) =
∫ 1

1
log n

φ

(
log s
2
√

λ
+√λ

)
ds = 2

√
λ

[
�
(
−√λ

)
−�

(− log log n
2
√

λ
−√λ

)]

→ 2
√

λ�
(
−√λ

)
;

(ii)

rn,1(λ) =
∫ 1

1
log n

φ

(
log s
2
√

λ
+√λ

)
log s ds

= 4λ
[√

λ�(−√λ)−√λ�

(− log log n
2
√

λ
−√λ

)

−φ(
√

λ)+ φ

(− log log n
2
√

λ
−√λ

)]

→ 4λ
[√

λ�(−√λ)− φ(
√

λ)
]
;

(iii)

rn,2(λ) =
∫ 1

1
log n

φ

(
log s
2
√

λ
+√λ

)
(log s)2 ds

= 8λ3/2(2− λ)�(−√λ)− 8λ2φ
(√

λ
)

− 4λφ

(− log log n
2
√

λ
−√λ

)
log log n

+ 8λ2φ
(− log log n

2
√

λ
−√λ

)
− 8λ5/2�

(− log log n
2
√

λ
−√λ

)

→ 8λ3/2(1− λ)�(−√λ)− 8λ2φ
(√

λ
)
.

Since as n→∞,

log n
log log n

∫ 1
log n

0
P
(
Yn ≥ qn |Xn = qn(s)

)
ds ≤ 1

log log n
→ 0
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and

log n
log log n

[∫ 1

1
log n

�

(
log s
2
√

λ
+√λ

)
ds− χU

]

= log n
log log n

[
− 1
log n

�

(− log log n
2
√

λ
+√λ

)
−�

(− log log n
2
√

λ
+√λ

)]

→ 0,

by assumption log n
log log n (λn − λ)→ γ , we have

cn
(√

λn −
√

λ
)
= cn

[
1
2
λ−

1
2 (λn − λ)+ o

(
c−1n
)]→ γ

2
√

λ

and

cn
(

1√
λn
− 1√

λ

)
= cn

[
−1
2
λ−

3
2 (λn − λ)+ o

(
c−1n
)]→− γ

2λ
3
2
.

Hence, with (19) we know that as n→∞,

log n
log log n

(
χU
n − χU

)

= log n
log log n

{∫ 1

1
log n

[
P
(
Yn ≥ qn |Xn = qn(s)

)−�

(
log s
2
√

λ
+√λ

)]
ds

}

+ log n
log log n

[∫ 1

1
log n

�

(
log s
2
√

λ
+√λ

)
ds− χU

]

+ log n
log log n

∫ 1
log n

0
P
(
Yn ≥ qn |Xn = qn(s)

)
ds

→
(√

λ

2
− γ√

λ

)
φ
(√

λ
)
.

The proof for α > 0 is finished.
Now we consider the case where α < 0. For any v ∈ (0,∞), we have as n→∞,

qn − δnv√
1− δ2n

>
qn√
1− δ2n

→∞.

Similarly to Lemma 4.2 it can be shown that

Fβn

(
qn − δnv√
1− δ2n

)
= 2φ

(
qn − δnv√
1− δ2n

)
�

(
βn

qn − δnv√
1− δ2n

)(
qn − δnv√
1− δ2n

)−1

+ 2βn

1+ β2
n
φ

(
qn − δnv√
1− δ2n

)
φ

(
βn

qn − δnv√
1− δ2n

)(
qn − δnv√
1− δ2n

)−2
[1+ o(1)]

− 2φ

(
qn − δnv√
1− δ2n

)
φ

(
βn

qn − δnv√
1− δ2n

)(
qn − δnv√
1− δ2n

)−3
[1+ o(1)]
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holds uniformly on v ∈ (0,∞). Hence, by (25) we have

χU
n = 2n

∫ ∞
0

φ

(
qn − δnv√
1− δ2n

)
�

(
βn

qn − δnv√
1− δ2n

)(
qn − δnv√
1− δ2n

)−1
fV(v) dv

+ 2nβn

1+ β2
n

∫ ∞
0

φ

(
qn − δnv√
1− δ2n

)
φ

(
βn

qn − δnv√
1− δ2n

)(
qn − δnv√
1− δ2n

)−2
fV(v) dv[1+ o(1)]

− 2n
∫ ∞
0

φ

(
qn − δnv√
1− δ2n

)
�

(
βn

qn − δnv√
1− δ2n

)(
qn − δnv√
1− δ2n

)−3
fV(v) dv[1+ o(1)]

:= Ln,1 + Ln,2 + Ln,3. (41)

We compute each term of Ln,1, Ln,2 and Ln,3 in turn. Noting that βn < 0 and δn < 0, by
applying integration by parts to the first part, we obtain

Ln,1 = 2n√
2π

(1− δ2n)
3/2

δn
exp
[
− q2n
2(1− δ2n)

]
q−2n

∫ ∞
0

κ̄n(v) d
[
exp
(

δnqnv
1− δ2n

)]

= −2n
π

(1− δ2n)
3/2

δn
�

(
βnqn√
1− δ2n

)
q−2n exp

[
− q2n
2(1− δ2n)

]

− 2n√
2π

(1− δ2n)
3/2

δn
exp
[
− q2n
2(1− δ2n)

]
q−2n

∫ ∞
0

exp
(

δnqnv
1− δ2n

)
dκ̄n(v)

:= Ln,11 + Ln,12, (42)

where

κ̄n(v) = exp
[
− δ2nv2

2(1− δ2n)

]
�

(
βn

qn − δnv√
1− δ2n

)
fV(v)

(
1− δnv

qn

)−1
.

We firstly consider the term Ln,11. According to the definitions of βn in (6) and λn in (2) we
know that for α < 0,

βn = −
√

λn(1+ 4α2)

2 log n

{
1+

(
1
4
− α2

1+ 4α2

)
λn

log n

+
[
3
32
− α4

2(1+ 4α2)2

]
λ2n

(log n)2
+ O

(
λ3n

(log n)3

)}
. (43)
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Substituting the expressions for qn, βn and δn in (43) gives

βnqn√
1− δ2n

= −
√

λn(1+ 4α2)

{
1+

(
1
4
− α2

1+ 4α2

)
λn

log n

− log
(−2πωn log n

)
2 log n

+
[
3
32
− α4

2(1+ 4α2)

]
λ2n

(log n)2

−
(
1
4
− α2

1+ 4α2

)
λn

log n
log
(−2πωn log n

)
2 log n

+ log
(−2πωn log n

)
2(log n)2

− [log
(−2πωn log n

)
]2

8(log n)2
+ 3ω2

n + 1
4ω2

n(log n)2
+ o

(
1

(log n)2

)}
.

Hence, as n→∞,

βnqn√
1− δ2n

→−
√

λ(1+ 4α2).

Applying the condition log
log log n (λn − λ)→ γ ∈ R and expanding �(

βnqn√
1−δ2n

) at the point

−√λ(1+ 4α2) by Taylor expansion we have

�

(
βnqn√
1− δ2n

)
= �

(
−
√

λ(1+ 4α2)
)
+
√
1+ 4α2φ

(√
λ(1+ 4α2)

) (√
λn −

√
λ
)

−
√

λn(1+ 4α2)φ
(√

λ(1+ 4α2)
) [(1

4
− α2

1+ 4α2

)
λn

log n

− log
(−2πωn log n

)
2 log n

]
+ o

(
1

log n

)
.

Therefore,

Ln,11 = 2�
(
−
√

λ(1+ 4α2)
){

1+
[
log (−2πωn log n)

]2
8 log n

+ log (−2πωn log n)
log n

}

− 2
√
1+ 4α2φ

(√
λ(1+ 4α2)

) (√
λn −

√
λ
)

+ 2
√

λn(1+ 4α2)φ
(√

λ(1+ 4α2)
) log (−2πωn log n)

log n
+ O

(
1

log n

)
. (44)

Now we consider Ln,12. Using integration by parts again implies

∫ ∞
0

exp
(

δnqnv
1− δ2n

)
dκ̄n(v) =

√
2
π

1− δ2n
δnqn

[
δn

qn
�

(
βnqn√
1− δ2n

)
− βnδn√

1− δ2n
φ

(
βnqn√
1− δ2n

)]

− 1− δ2n
δnqn

∫ ∞
0

exp
(

δnqnv
1− δ2n

)
d2κ̄n(v).
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Since δn < 0 and βn < 0, we have that for v ∈ (0,∞), exp( δnqnv
1−δ2n

) < 1, exp[− δ2nv2

2(1−δ2n)
] < 1

and (1− δnv/qn)−1 < 1. Direct calculation gives

∣∣∣∣
∫ ∞
0

exp
(

δnqnv
1− δ2n

)
d2κ̄n(v)

∣∣∣∣ ≤ O(q−1n ).

Due to the fact that qn→∞, βn→ 0 and δn→ 2α/
√
1− 4α2 as n→∞,

|Ln,12| ≤ 2n
π

(1− δ2n)
5/2

δ2nq4n
exp
[
− q2n
2(1− δ2n)

]
O(1) ≤ O

(
1

log n

)
. (45)

Using similar arguments to Ln,2 we have that for sufficiently large n,

Ln,2 = −2n βn

1+ β2
n

(1− δ2n)
2

πδn
q−3n φ

(√
1+ β2

nqn√
1− δ2n

)
[1+ o(1)]

= −
√

λn(1+ 4α2)φ
(√

λn(1+ 4α2)
) 1
log n

[1+ o(1)] (46)

and

Ln,3 = 2n
(1− δ2n)

5/2

πδn
q−4n �

(
βnqn√
1− δ2n

)
exp
[
− (1+ β2
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]
[1+ o(1)]

= −�
(
−
√

λ(1+ 4α2)
) 1
log n

[1+ o(1)]. (47)

Hence, by (41) and the expansions of Ln,11, Ln,12, Ln,2 and Ln,3 in (44)–(47), it follows from
the assumption log n

(log log n)2 (
√

λn −
√

λ)→ γ that

log n
(log log n)2

(χU
n − χU) = log n

(log log n)2
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→ 1
4
�
(
−
√
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)
− γ√

λ

√
1+ 4α2φ

(√
λ(1+ 4α2)

)

as n→∞. The proof is complete. �

Proof of Theorem 2.4: For α > 0, noting that λn→ 0, λn log log n→∞ as n→∞, it
follows from Lemma 4.4 that

qn − ρnqn(s)√
1− ρ2

n
= log s

2
√

λn
+√λn +

(
log log n

) 3
2
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(
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−

√
λn√
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+
√
log log n
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(
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)2 + (logπ− 3λn − 2
)
log s

8
√

λn log log n
+ o

(
1√

λnlog n

)
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uniformly on s ∈ [1/ log n, 1] and tends to infinity uniformly. Thus, similarly to the proof of
Theorem 2.3 in Hu et al. (2022), we know that for sufficiently large n

∫ 1

1
log n
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ds = �
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⎠
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Analogously, by the definition of ωn in (6), we have

ωn = 2α
[
1−

(
1
2
+ α2

)
λn

log n
+ o

(
λn

log n
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(49)

as n→∞. Hence, further by Lemma 4.4, we get

ωnqn(s) = 2α
√
2 log n

[
1− logπ+ log log n

4 log n
− log s

2 log n
+ o

(
1

log n

)]
.

Applying (15) yields

�
(
ωnqn(s)

) = 1
4α

(π log n)2α
2− 1

2

( s
n

)4α2

[1+ o(1)] (50)

uniformly on s ∈ [1/ log n, 1]. Integrating the right end of the above expression from 1/ log n
to 1 implies∫ 1

1
log n

�
(
ωnqn(s)

)
ds = 1

4α(1+ 4α2)
n−4α2

(π log n)2α
2− 1

2 [1+ o(1)] . (51)

From the proof of Theorem 2.3 we know that P(Yn ≥ qn |Xn = qn(s)) has the expres-
sion (37). By (48), (50) and (51) we have that for sufficiently large n

∫ 1

1
log n

Kn,1(s) ds =
∫ 1

1
log n

�

(
qn − ρnqn(s)√

1− ρ2
n

)
[1−�(ωnqn(s))]−1 ds

=
∫ 1

1
log n

�

(
qn − ρnqn(s)√

1− ρ2
n

)[
1−�(ωnqn(s))+ O

(
�

2
(ωnqn(s))

)]
ds

= 1− 1
log n

−
∫ 1

1
log n

�

(
qn − ρnqn(s)√

1− ρ2
n

)
ds

−
∫ 1

1
log n

�(ωnqn(s)) ds+ O
(
(log n)4α

2−1n−8α2
)

= 1−
√
2λn
π

[1+ o(1)].
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It hence follows from (40) that∫ 1

1
log n

Kn,2(s) ds = O
(
n−2α2

(log n)α
2−1/2) = o

(√
λn

)
.

Since ∫ 1
log n

0
P
(
Yn ≥ qn |Xn = qn(s)

)
ds ≤ 1

log n
= o

(√
λn

)
,

combining (37) with (19) gives

χU
n − χU =

∫ 1

1
log n

[Kn,1(s)+ Kn,2(s)] ds+
∫ 1

log n

0
P
(
Yn ≥ qn |Xn = qn(s)

)
ds− χU

= −
√
2λn
π

[1+ o(1)].

The proof for α > 0 is finished.
If α < 0, χU

n has the expression (41). By the expansion of βn in (43) and Lemma 4.4,

βnqn√
1− δ2n

= −
√

λn(1+ 4α2)

[
1− log

(−2πωn log n
)

2 log n
+ o

(
1

log n

)]
.

Hence, βnqn√
1−δ2n
→ 0 as n→∞. Applying Taylor’s expansion to �(

βnqn√
1−δ2n

) at the point zero
gives

�

(
βnqn√
1− δ2n

)
= 1

2
− 1√

2π

√
(1+ 4α2)λn + O

(
λ
3/2
n

)
.

Similarly to the proof of Theorem 2.3, substituting the above equation and the expression of
qn in Lemma 4.4 in Ln,11 gives

Ln,11 = 1−
√

2
π

√
(1+ 4α2)λn + O

(
λ
3/2
n

)
.

Similarly to the proof of (45)–(47), we can show that under the assumption (45) of the
theorem,

Ln,2 = −
√

(1+ 4α2)λnφ
(√

(1+ 4α2)λn

) 1
log n

[1+ o(1)]

and

Ln,3 = −12 exp
[
− (1+ 4α2)λn

2

]
1

log n
[1+ o(1)].

Thus, with (45) we have

χU
n − χU = Ln,1 + Ln,2 + Ln,3 − χU = −

√
2
π

√
(1+ 4α2)λn[1+ o(1)].

The proof is complete. �
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Proof of Theorem 2.5: Consider first the case where α > 0. By assumption λn
log log n → 0 and

Lemma 4.4 we have that as n→∞,

qn − ρnqn(s)√
1− ρ2

n

= log s
2
√

λn
+√λn +

(
log log n

) 3
2

4 log n

⎡
⎣ log s
2
√

λn log log n
−

√
λn√

log log n
+ (λn)

3
2(

log log n
) 3
2

⎤
⎦

+
(
log s

)2 + (logπ− 2) log s
8
√

λn log n
− 3
√

λn log s
8 log n

+ o

⎛
⎝ λ

3
2
n

log n

⎞
⎠

uniformly on s ∈ [1/ log n, 1]. Hence,
∫ 1

1
log n

�

(
qn − ρnqn(s)√

1− ρ2
n

)
ds =

√
2
π

1√
λn

exp
(
−λn

2

)
[1+ o(1)].

By (49) and Lemma 4.4 we obtain

ωnqn(s) = 2α
√
2 log n

[
1−

(
1
2
+ α2

)
λn

log n
− log(π log n)

4 log n
− log s

2 log n
+ o

(
1

log n

)]

and

�
(
ωnqn(s)

) = 1
4α

exp
[
4α2(1+ 2α2)λn

]
(π log n)2α

2− 1
2

( s
n

)4α2

[1+ o(1)]

uniformly on s ∈ [1/ log n, 1]. Thus,
∫ 1

1
log n

�

(
qn − ρnqn(s)√

1− ρ2
n

)
�
(
ωnqn(s)

)
ds ≤

∫ 1

1
log n

�
(
ωnqn(s)

)
ds

= O
(
n−4α2

(log n)2α
2− 1

2 exp
[
4α2(1+ 2α2)λn

])

= o
(

1√
λn

exp
(
−λn

2

))
.

And furthermore,∫ 1

1
log n

Kn,1(s) ds =
∫ 1

1
log n

�

(
qn − ρnqn(s)√

1− ρ2
n

) [
1+ O

(
�
(
ωnqn(s)

))]
ds

=
∫ 1

1
log n

�

(
qn − ρnqn(s)√

1− ρ2
n

)
ds

+
∫ 1

1
log n

�

(
qn − ρnqn(s)√

1− ρ2
n

)
�
(
ωnqn(s)

)
dsO(1)

=
√

2
π

1√
λn

exp
(
−λn

2

)
[1+ o(1)].
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Since in the same manner to (40) we can show that∣∣∣∣∣
∫ 1

1
log n

Kn,2(s) ds

∣∣∣∣∣ ≤ O
(
n−2α2

(log n)α
2−1/2) = o

(
1√
λn

exp
(
−λn

2

))
,

and ∫ 1
log n

0
P
(
Yn ≥ qn |Xn = qn(s)

)
ds ≤ 1

log n
= o

(
1√
λn

exp
(
−λn

2

))
.

Therefore, with (37) we have

χU
n =

∫ 1

1
log n

P
(
Yn ≥ qn |Xn = qn(s)

)
ds+

∫ 1
log n

0
P
(
Yn ≥ qn |Xn = qn(s)

)
ds

=
√

2
π

1√
λn

exp
(
−λn

2

)
[1+ o(1)].

The desired result for α > 0 is proved.
If α < 0, we have βnqn√

1−δ2n
→−∞ as n→∞. By Lemma 4.4 and the assumption

λn
log log n → 0 we know that

βnqn√
1− δ2n

= −
√

λn(1+ 4α2)

[
1+ λn

4(1+ 4α2) log n
− log

(−2πωn log n
)

2 log n
+ o

(
1

log n

)]

as n→∞. Thus, it follows from (15) that

�

(
βnqn√
1− δ2n

)
=

φ
(√

(1+ 4α2)λn

)
√

(1+ 4α2)λn

[
1− 1

(1+ 4α2)λn
+ O

(
1
λ2n

)]
.

Hence, with (42) we get

Ln,11 =
2φ
(√

(1+ 4α2)λn

)
√

(1+ 4α2)λn

[
1− 1

(1+ 4α2)λn
+ O

(
1
λ2n

)]
.

In the same way, we can obtain the expression (45) of Ln,12. Moreover, using the same
arguments as that of (46)–(47) to Ln,2 and Ln,3 yields

Ln,2 = −
√

(1+ 4α2)λnφ
(√

(1+ 4α2)λn

) 1
log n

[1+ o(1)]

and

Ln,3 = −
√
2π√

(1+ 4α2)λn
φ2
(√

(1+ 4α2)λn

) 1
log n

[1+ o(1)].

Hence,

χU
n = Ln,1 + Ln,2 + Ln,3 =

2φ
(√

(1+ 4α2)λn

)
√

(1+ 4α2)λn

[
1− 1

(1+ 4α2)λn
+ O

(
1
λ2n

)]
.

The proof is complete. �
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