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ABSTRACT ARTICLE HISTORY
The tail dependence coefficient measures extremal dependence Received 22 March 2025
between two random variables. In this note, we investigate the tail ~ Accepted 22 August 2025

dependence of a bivariate skew normal triangular array with equal

. . . NP KEYWORDS
skewness and varying correlation coefficients {p,, n > 1} satisfying the Sequential tail dependence
Husler-Reiss condition via a redefined sequential tail dependence coef- coefficient; skew normal
ficient. For more detailed insights, the convergence rate to the sequen- distribution; Hiisler-Reiss

tial tail dependence coefficients is also established under a refined condition
Husler-Reiss condition. Numerical experiments are conducted to illus-
trate the theoretical results.

1. Introduction

Quantifying and understanding tail dependence of a model is important in statistic mod-
elling of multivariate extremes and finds significant application in risk measurement
(Embrechts et al., 2002). For a bivariate random vector (X, Y), a natural and classical measure
of extremal dependence is the tail dependence coeflicient (Hult & Lindskog, 2002, Definition
2.3). Assuming that (X, Y)) has marginal distribution functions F; (x) and F,(y), the upper tail
dependence coefficient yy of (X, Y) is defined as

ru =lmP (¥ > B ()X > Ff @)
u

provided the limit exists, where F< (u) := inf{s € R|F(x) > u} for all u € (0,1) is the
generalized inverse of F. Similarly,

yu=lmP (Y < Ff @)X < Ff ()
u
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is referred to as the lower tail dependence coefficient. Under the assumption that F; and F,
are continuous, they are equivalent to

1
=limyY =lim-P(1 —FX) <t,1—F(Y) <1, 1
xu = lim 2y, ;igt( 1(X) < 2(Y) 1) (1)

and

1= lim g s=lim - (LX) < 6. (1) <
respectively. The tail dependence coeflicient, dating back to Sibuya (1960), is also known as y
dependence measure in Coles et al. (1999). The upper tail dependence coefficient measures
the probability that one variable is extremely large given that another random variable is
large. It captures the ability of distributions to generate joint extremes. Generally, (X, Y) is
said to exhibit asymptotic upper tail dependence if yyy > 0. The trivial values yy = 0 and
xu = 1 indicate, respectively, asymptotic independence and full dependence in the upper
tail. Concepts corresponding to the lower tail are defined analogously.

The derivations and analytic computations of tail dependence coefficients for specific fam-
ilies of distributions have received much attention in recent years. Sibuya (1960) appears as
an incipient work in this field which investigated the asymptotic independence property of
bivariate normal distributions with constant correlation coefficients. Following this work, the
closed-form expression of tail dependence coefficients of many classical or constructed dis-
tribution families has been established in the literature, including Aleiyouka et al. (2017),
Banachewicz and van Der Vaart (2008), Engelke et al. (2019), Fung and Seneta (2010),
Hult and Lindskog (2002), Hammerstein (2016), Ling and Peng (2015), Padoan (2011),
Schmidt (2002), and Sepanski (2020). Although the tail dependence coefficient can indi-
cate whether a distribution is asymptotically dependent, practical applications may require
more than just knowing this limit. For more detailed insights, it is often necessary to fur-
ther investigate the convergence rate of yU to its limit . This issue was first addressed by
Ledford and Tawn (1996), where they examined the asymptotic convergence behaviour of
the tails in bivariate extreme value distributions, including Clayton and Morgenstern dis-
tributions. Since this pioneering work, subsequent studies have investigated the decay rate
for various distribution families. For example, see Engelke et al. (2019), Heffernan (2000),
Hashorva (2010, 2012), and Lao et al. (2023).

The above studies investigated the tail properties of distributions with static and constant
distribution parameters. However, many previous studies have provided empirical evidence
of time-varying dependence structures among financial assets, for example, Christoffersen
et al. (2018) and Guegan and Zhang (2010). Data in finance and insurance often cover a
long time period and the tail dependence structure of economic factors may be time-varying.
Using dynamic models whose tail dependence depends on the level of the model’s parameters
can be one effective mean to capture these characteristics, and become a popular approach
for tail risk modelling in asset investment. For recent work, see Fortin et al. (2023), Ito
and Yoshiba (2025), and Zhang (2021). To study the tail dependence property of models
with varying tail dependence structure is a key prerequisite for correct application of models.
Recently, Hu et al. (2022) considered the asymptotic tail dependence property of a bivariate
Hisler-Reiss model with parameter depending on # in terms of a tail dependence function.
Specifically, for the bivariate normal triangular array {(&,, 77,4), 1 < i <,n > 1} with stan-
dard normal marginal distribution functions @ (x) and correlation coeflicient {p,, n > 1} of
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(&ni> Mni)> 1 < i < n satisfying the so-called Hiisler-Reiss condition (Hiisler & Reiss, 1989)
An=Q0—py)logn — 1 €[0,00] asn— oo, (2)

they obtained the limit upper tail dependence function of the sequence (&1, 7141), # > 1 given
by
. X y
oty = lim wP(1-0E) < S 1-00m <2), xy>0 @)
and further established the convergence rates to the limit. The quantity in (3) allows to inves-
tigate the tail dependence properties of random vectors with parameters that depend on n,
whereas yU defined in (1) is not applicable in this scenario.

The bivariate skew normal distributions introduced in Azzalini and Valle (1996) have
received considerable attention both in theoretical studies and applied studies for its abil-
ity to model asymmetry in risk measurement. A random vector (X, Y) follows a bivariate
skew normal distribution SN(e, R) if it has the density

@) =24xRP@’x), x=(xy' R,

wherea = (a1, 2) " € R?is the skewness parameter vector (the symbol T denotes the trans-
pose operator of a vector), and ¢, (x, R) denotes the density function of a bivariate normal
distribution with mean 0 and correlation matrix

R:(; /1’) ~1<p<l

The asymptotic tail dependence properties of bivariate skew normal distributions were
discussed in Bortot (2010). Fung and Seneta (2016) showed that the bivariate skew nor-
mal distribution with equal skewness parameters is tail independent and y} admits a
regularly varying behaviour. Recently, Beranger et al. (2019) proved that the extended
skew normal distribution, which includes the bivariate skew normal distribution as a spe-
cial case, is also asymptotic independent in the upper tail. Moreover, following Hiisler
and Reiss (1989), they considered an independent bivariate skew normal distributed tri-
angular array {(Xyui, Yni),1 < i < n,n > 1} with correlation coefficients p, and skewness
parameters depending on n. Under the Hiisler-Reiss condition and an assumption on the
increasing rate of asymmetry, Beranger et al. (2019) established the limit distribution of nor-
malized maxima of {(X,;, Yy;),1 < i < n,n > 1} and formulated the upper tail dependence
coefficient through the limit extremal distribution.

In this paper, we are interested in the sequential tail dependence coeflicients of bivariate
skew normal triangular array with correlation coefficients {p,, n > 1} satisfying the Hiisler-
Reiss condition. Similarly to Beranger et al. (2019) but particularly, for fixed n, we assume
the joint density function of (X, Yyi), 1 < i < nis given by

Jfa(x, 0, Ry) = 2¢h2(x, R,,)(I)(och), x = (x,y)T e R?, (4)

where @ = (a, )" € R? and

_( 1 pn
Rn—(pn 1), 1<pn<l.

Supposing the correlation coefficient {p,, n > 1} satisfies the Hiisler-Reiss condition (2),
we investigate the asymptotic tail dependence of {(Xyi, Yyi),1 < i < n,n > 1} through the
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sequential tail dependence coefficient defined similarly to (3). Since the index i does not play
a role in the asymptotic analysis of the tail dependence structure, without loss of generality,
we omit the sub-index i in the following and write (Xj,, Y,) to represent a generic pair from
the n-th row of the array. Hence, we define the sequential upper tail dependence coeflicient
as
. U . 1 1
yu= lim y,/:= lim nP|{1—-F, (X,) < —,1—F,, (Y,) < -]}, (5)
n— o0 n n

n— oo

and the sequential lower tail dependence coefficient by
. L . 1 1
xp= lim y, := lim nP|F, (X)) > —, F,,(Ys) > —),
n—oo n— 00 n n

if the limits exist. Here F,,, represents the common marginal distribution function of X,
and Y, which follows a univariate skew-normal distribution characterized by the skewness
parameter w, (see (6)). The specific expressions of yy and yy are derived, and the conver-
gence rates of y to yy are established under the refined Hiisler-Reiss conditions. Compared
with the asymptotically independent bivariate skew normal distribution with equal skewness
and constant correlation coefficients p, this new model has a wider region of tail dependence
which improves the ability of bivariate skew normal distribution to model tail dependence.
We remark that we only require an assumption on the correlation coeflicient {p,,n > 1}
in our model, differently from the model considered in Beranger et al. (2019), where the
absolute values of skewness parameters are assumed to tend to infinity additionally.

The organization of this paper is as follows. In Section 2 we present the main results.
A numerical study provided in Section 3 illustrates the asymptotic behaviour of yU. All
auxiliary lemmas and proofs are deferred to Section 4.

2. Main results

In the following, let ®(x) = 1 — ®(x) and ¢ (x) denote the survival function and density
function of standard normal distribution, respectively. Recall that for each n > 1, (X, Y,)
denotes a typical observation from the n-th row of a triangular array of bivariate skew normal
random variables with varying correlation p,. Thus, while we use the notation {(X,, Y;,),n >
1} for simplicity, the underlying structure is a triangular array. We now state the main results
of this paper.

Theorem 2.1: Let {(X,,Y,),n > 1} be a bivariate skew-normal distributed random vec-
tor sequence with density function given by (4), where {pn, n > 1} satisfies the Hiisler-Reiss
condition (2). Assume further that {p,,n > 1} is bounded away from —1 when . = oo. Then

B 20(V/7), a >0,
V=129 (,/}{(1+4a2)), a < 0.

Remark 2.1: In Theorems 2.1 and 2.5, we require the sequence {p,,n > 1} to be bounded
away from —1 when A = co to ensure that the skewness parameters {w,,n > 1} of the
marginal skew normal distributions of {(X,, Y,), n > 1} stay bounded away from zero. This
is essential for applying the expansion of the marginal tail distribution {F,,, (-),n > 1} from
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Lemma 4.2. The boundedness condition guarantees the correct comparison of convergence
orders in the expansion and underpins the validity of the analysis.

Remark 2.2: Let {(Xy;, Yui),1 < i < n,n > 1} bean independent bivariate skew-normal tri-
angular array with the density function given in (4), and it follows from Theorem 2.1 and
the equivalence between the tail dependence function and normalized sample maxima (cf.
Resnick, 2008, Chapter 5) that

1 1
P max ——— <pgumax ——— < nj)] — -2 — y
(1<i<n 1= Fop Xo) —1%i%n 1 — Fg (Yp) ) xv

as n — o0o. This indicates that, under the Hiisler-Reiss condition, the extremes in the
triangular array may exhibit asymptotic extremal dependence.

Remark 2.3: Fung and Seneta (2016) show that the tail of bivariate skew-normal distri-
bution with identical skewness coefficients and a constant correlation coefficient p € (0, 1)
is asymptotically independent. Theorem 2.1 demonstrates that, by introducing the Hiisler-
Reiss condition, the bivariate skew normal model with n-varying parameters can capture a
wider range of tail dependence structures. Specifically, depending on the value of 1, the model
can exhibit either asymptotic dependence or asymptotic independence in the tails.

The lower sequential tail dependence coefficient is determined by the upper sequential tail
dependence coefficient, noting that f, (x, &, R,) = f,(—x, —a, R,,) for the density function of
(X4, Yy) given by (4). The corresponding result for the lower tail is formalized in the following
theorem, and its proof, being analogous to that of Theorem 2.1, is omitted.

Theorem 2.2: Assuming the conditions of Theorem 2.1 hold, then

_{za(m), “>0,

2w, a < 0.

Remark 2.4: If p, = p € (—1,1), then the Hiisler-Reiss condition (2) holds with 1 = oo,
and it hence follows from Theorem 2.1 that yy = 0, coinciding with the result provided
by Bortot (2010).

Remark 2.5: The sequential upper tail dependence coefficient of bivariate skew normal dis-
tribution with a > 0 is identical to that of the Hiisler-Reiss distribution (Hu et al., 2022,
Theorem 2.1), i.e., the bivariate Gaussian distribution with correlation coefficient p,,. It does
not rely on the value of « in this case.

Theorem 2.3: For A € (0, 00), assume the conditions of Theorem 2.1 hold.

(1) Ifa > 0, assuming further that %(ln — 1) =y €eRasn— oo, then

logn U N/
loglogn(X” — )= (7 B ﬁ)(ﬁ (ﬁ) '
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(2) Ifa <0, assuming (lo,;%(’l” —1)—> y € Rasn — oo, then

P ;16 (VA +ao7) - %\/1 +iag (Vi + aad),

(loglog n)?

where yu is given by Theorem 2.1.

Theorem 2.4: For A =0, assuming the conditions of Theorem 2.1 hold and further,
Anloglogn — o0 asn — oo, then for sufficiently large n,

[24,
Xn =AU~ — [L+o()]

Xy = xu-— \/g\/(l +4a2) Ay [1 4 0(1)]

when a < 0, where yy = 1 as given by Theorem 2.1.

when a > 0, and

Theorem 2.5: For A = 0o, assuming the conditions of Theorem 2.1 hold and further,
An/loglogn — 0asn — oo, then for sufficiently large n,

An (14 o(1
Y o(1)]
when a > 0, and

U _ 2.1 [_M]l 1
Xn \/;mexp 2 [ +0( )]

2 1
= e
TN/ An

when a < 0.

Remark 2.6: When p, = p, the random vector (X, Y,,) satisfies the Hiisler-Reiss condi-
tion (2) for A = co. However, the assumption of Theorem 2.5 does not hold in this case, and
therefore the expansions of y U for p, = p can not be obtained from Theorem 2.5. Instead,
the convergence rate for yU can be derived from Fung and Seneta (2016), as given in the
following.

(1) Ifa > 0, we have thatas n — oo,

v it [14p
~n Hm — 10 n 1+pn_
Xn > Vitp T4, (Tlogm)

(2) Ifa < 0, we have that as n — o0,

2
U i (S2men)

AT O B3
Xn ﬁﬁn(l +ﬁ%)2 (log 7’1) 5

where

o) z_/(l—pn)[1+za2(1+pn)1' ©

T+ a2(1=p2) 1+ py
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Remark 2.7: Theorems 2.3-2.5 and Remark 2.6 show that the positive skewness parameter
a > 0 has little impact on the convergence rate, while under otherwise identical conditions,
the convergence of U to yy is faster when o < 0.

Remark 2.8: The parameter A in the Hiisler-Reiss condition characterizes the rate at which
the correlation coeflicients {p,,n > 1} converge to 1, and this convergence rate determines
the form of the tail dependence. Specifically, we have the following results.

(1) When 4 € (0,00), we are in the general Hiisler-Reiss regime of intermediate or partial
extremal dependence. The components are neither perfectly dependent nor completely
independent in the tails. Instead, they exhibit a non-trivial probability of joint extremes.

(2) When 4 =0, it means that p, — 1 sufficiently fast as n — oo, indicating perfect
sequential tail dependence, that is the sequential tail dependence coefficient equals 0.

(3) When 1 = o0, the sequence of correlations {p,, n > 1} is either constant or still tends to
1, but does so at a slow rate. In this case, the limiting distribution behaves as if the com-
ponents are asymptotically independent in the extremes, resulting in a tail dependence
coeflicient of yy = 0.

Moreover, the rate that 4, converges to 4 controls the rate at which the scaled joint tail
probability yV converges to its limit yy, as seen in Theorems 2.3-2.5.

3. Numerical analysis

In this section, we present a numerical study, which is done in R, to illustrate the behaviour of
X,? in the framework of bivariate n-varying skew normal distribution defined in (4), with p,
satisfying the Hiisler-Reiss condition. To show the convergence behaviour of Y to its limit
xu,we calculate the values of Y and yy of SN(e, R,,) with finite # under the following three
settings and observe the difference between U and yy:

(i) @) pn=1—4/logn, 1, = A with 1 € (0, 00);
() pp=1—1/logn—1/[2(logn)?], 2, = A + 1/(2logn) with A € (0, c0);
(i) @) pp=1- 1/(logn)2, An = 1/logn with A = 0;
(b) pp=1—1/(nlogn), i, =1/nwith A = 0;
() pn=1—1/(exp(n)logn), 1, = exp(—n) with A = 0;
(iii) pn = p € (—=1,1) implying 4 = oo.

For case (i) with 4 = 0.5, 1, 2, Figures 1-2 present the values of )(,S] and yy for the skew-
normal distribution SN(e, R;), where the skewness parameter o takes the value 0.8, 0.5, 0.25
and —0.8, —0.5, —0.25. The figures show that smaller 1 leads to stronger tail dependence.
When a > 0 and other parameters are fixed, despite the skewness parameter differs, the
model’s ){,? converges to the same limit. In contrast, when a < 0, the parameter a has a
significant impact on the value of yU. This is consistent with the conclusion in Theorem 2.1:
when a > 0, yy is independent of a, whereas when a < 0, yy is a function of a and it
decreases when o decreases. Given o > 0, the faster 1, converges to 4, the faster U con-
verges to yy. As illustrated in the figure, the convergence is faster when 4, =1 — 1/logn.
On the contrary, when & < 0, the convergence rate of y ! is insensitive to the changes in 4,
in Figure 2. In addition, for & < 0, the convergence rate of U is faster when « is smaller,
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Figure 1. The values of Y for SN(a, R,) with o = 0.5,1,3 are plotted against n on a logarithmic scale
for n =10,11,...,10° (left panel) and n = 10,11, .. ., 10° (right panel). Different rows display results
for varying values of A. The left and right panels respectively illustrate the results for p, =1 — 1/logn
and pp = 1 — 1/logn — 1/[2(log n)?]. The horizontal lines represent the true limiting values of yy =
Zi(ﬂ), which are, from the top row to the bottom row, 0.4795, 0.3173, and 0.1573, respectively.

supporting the conclusion in Theorem 2.3. Moreover, it is observed that when o < 0 and
n is large, xV oscillates as it converges to the limit. This occurs because . is a sequence,
and when 7 is sufficiently large, the quantiles of the univariate skew-normal distribution at
1 — 1/n behave as a step function.
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Figure 2. The values of ! for SN(e, R) with & = —0.5, —1, —3 are plotted against n on a logarithmic
scaleforn = 10,11, ..., 10° (left panel)andn = 10,11, .. ., 10° (right panel). Different rows display results
for varying values of A. The left and right panels respectively illustrate the results for p, =1 — 1/logn
and pp = 1 — 1/logn — 1/[2(log n)?]. The horizontal lines represent the true limiting values of yy =
20 (y/A(1 + 4a:2)), which are, from the top row to the bottom row, (0.3173,0.1138, 0), (0.1573, 0.0253, 0),
(0.0455,0.0016, 0) for & = (—0.5, —1, —3), respectively.
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For case (ii), Figure 3 presents the values of yV and yy with different p,,, which converge
to one with various rates. Clearly, the convergence rate of y relies on the convergence rate of
pn» where faster convergence rate of p,, results in faster convergence rate of y. In addition,
when 4 = 0, the convergence speed of ! decreases as a decreases, which is consistent with
the statement in Theorem 2.4.

For case (iii), we take p,, = p = £0.8, £0.5, £0.25. The simulation results for the skew-
normal distribution SN(et, R,,) with positive skewness parameter & = 0.8, 0.5, 0.25 and nega-
tive skewness parameter & = —0.8, —0.5, —0.25 are shown in Figures 4 and 5. With p,, fixed
to be a constant, the model coincides with the bivariate skew normal distribution consid-
ered in Fung and Seneta (2016). Figures 4-5 indicate that the decay rate of yU increases for
decreasing value of p, in line with the results given in Fung and Seneta (2016). Furthermore,
compared with the models having positive p,, the value of y U for models possessing negative
pn converges more quickly.

Let 7Y be the second-order approximation of V. Specifically,

(1) for A € (0,00), whena > 0,

YgZXU-FlOgIOgn(ﬂ—L)gb(ﬂ),

logn 2 Vi

and when a < 0,

2 T
7,‘{:;(U+(loglin) [l@( //1(1—{—4(12)) _ ﬂgb( /,1(14_40[2))];

logn 4 VA
(2) fori =0,
244 0
_U _ XU — - > o >0,
n
2
XU — \/j\/ (1+4aH)i, o <0
T
(3) for Al = oo,

,/ELex (—ﬁ) a>0
—U _ T /Ay P 2 )’ ’
Ln =1 2 1 [ (1+4a2)/1n]

e -, a <O

————— X
T/ + 4a?) i, P 2

To validate the convergence rates of y — yy to zero in Theorems 2.3-2.5, we calculate
the value of ¥V, 7V and yy atn = 10, 11,.. ., 10° under the following setting:

(iv) (@) A=1,p,=1—A/logn—loglogn/(logn)?, i, = /. + loglogn/logn;
(b) pu=1—1/[(logn)(loglogn)®8], A, = 1/(loglog n)*¥, implying 1 = 0;
(c) pu=1— (loglogn)®®/logn, implying 1 = co.

Note that the assumptions of Theorems 2.3-2.5 are satisfied respectively under this setting.
The performance of the first-order approximation yy and the second-order approxima-
tion yY is presented in Figure 6. As seen in the figure, in most cases, the second-order
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Figure 3. The values of ! for SN(e, R) with & = £0.5, £1, 43 are plotted against n on a logarithmic
scale for n = 10,11,. .., 10 Different rows display results for varying values of pp, which is, from top
to bottom, p, = 1 — 1/(logn)?, p, =1 —1/(nlogn) and p, = 1 — 1/(exp(n) log n). The left and right
panels illustrate the result for positive and negative a, respectively. The horizontal lines show the true
limiting values of yy, specifically, yy = 1.

approximation is closer to the value of yU than the first-order approximation. However, when
n is relatively small, 77U may exhibit a larger difference from U, as shown in the subplot in
the lower right corner of Figure 6. This is because the second-order approximation is derived
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Figure 4. The values of yY for SN(a, Ry) with @ = 0.5,1,3 and p, = p = £0.8,£0.5,40.25 (imply-
ing A = co) are plotted against n on a logarithmic scale for n = 10,11,...,200 (left panel) and n =
10,11,...,10° (right panel). The left and right panels illustrate the result for negative and positive p,,
respectively. The horizontal lines show the true limiting values of yy, specifically, yy = 0.

under the condition that n approaches infinity. When the convergence rate of 1, is slow and
n is small, the error might be significant, but as » increases, it tends to converge to the limit.

The simulation results illustrate that the bivariate skew-normal distribution with varying
correlation coefficients exhibits richer tail behaviour. Therefore, in practical applications, it
can more accurately describe the tail characteristics of the data.
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Figure 5. The values of X,S’ for SN(«, R;) with & = —0.5,—1,—3 and p, = p = +0.8,£0.5, £0.25
(implying A = 00) are plotted against n on a logarithmic scale for n = 10, 11, . .., 200. The left and right
panels illustrate the result for negative and positive pp, respectively. The horizontal lines show the true
limiting values of yy, specifically, yy = 0.

4. Proofs

Let F,, and f,, denote the distribution function and density function of a univariate skew
normal distribution with skewness parameter o (shorted by SN(w)). From (4) we know that

d . . .. . .
X, =Y, and X,, follows univariate skew normal distribution with skewness parameter w;,,



14 (&) S.HUETAL

pn=1-(logn +log log n)/(log n)z, A=1l,a=1 on =1-(logn +loglog n)/(log n)z, A=1l,a=-1

0.32

0.28
1
< \
0.07
1

T — Xn
[Te)
< — % 3 4
g ] — Xu °
| 3
] S |
© T T T T T T T T T T
le+01 le+02 le+03 le+04 le+05 le+01 le+02 1le+03 le+04 le+05
n n
pn=1-(ogn)*(loglogn)™®2 A=0,a =1 pn =1-(logn)(loglogn)™®8 A=0,a=-05
o | Q]
— —
[V u
— Xn © | Xn
g | _— )_(an o - )_(g
— Xu © | — Xu
o
©
S =
N /
< o 7l
o
N /
c o~
S
T T T T T T T T T T
le+01 le+02 1e+03 le+04 le+05 le+01 le+02 1le+03 le+04 le+05
n n
pn=1-(loglogn)®®/logn, A=w, a =1 pn=1-(loglogn)®®/logn, A=, a=-1

0.15
]

T T T T T
le+01 le+02 1le+03 le+04 le+05 le+01 le+02 le+03 le+04 le+05

n n

0.00

00 01 02 03 04 05
| |
/ SRS
0.05 0.0
| |

Figure 6. The values of X,‘,’, 7,‘,’, and yy for the SN(e, R,) are plotted against n on a logarith-
mic scale for n = 10,11,...,10°. Different rows display results for varying values of p,, which are,
from top to bottom, p, =1 — A/logn — loglogn/(logn)?, pp =1 — (logn)~"(loglogn)=%8, p, =
1 — (loglog n)°2/ log n. The left and right panels illustrate the result for positive and negative a respec-
tively. The horizontal lines show the true limiting values of yy.
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with its density function given by

Jou (%) = 2¢ (x) @ (@) (7)

To prove Theorem 2.1, we need to utilize the asymptotic expansion of the quantile func-
tion of a univariate skew-normal distribution with a n-varying correlation coefficient p,,.
The difficulty is that the quantile function of the skew-normal distribution does not have a
closed form. In Sections 3 and 4.2 (Eq. 16) of Fung and Seneta (2018), the authors derived
the asymptotic expansion of the quantile function for a skew-normal distribution with a con-
stant correlation coefficient, using regularly varying functions. In the following, we use the
similar method to prove the asymptotic expansion of the upper quantile of a skew-normal
distribution with a n-varying correlation coefficient.

We emphasize that the distinction in our lemma lies in the fact that our correlation coeffi-
cient p, is variable, so as n changes, the distribution function of this univariate skew-normal
distribution also varies with n. Therefore, what we actually obtain is the asymptotic expansion
of the quantile function for a sequence of skew-normal distribution functions. Let {x,, n > 1}
be a sequence of positive numbers such that x, — oo as n — oo. Next, we will first prove
a result similar to Corollary 1 in Fung and Seneta (2018), which gives an asymptotic closed
form expression of the quantile functions.

Lemma4.1: Consider the sequence {G,(x),n > 1}, where each G,,(x) is a positive, continuous,
and strictly increasing distribution function defined on [A, 00), with A> 0. Let {uy,n > 1} be
a sequence of positive numbers such that u, — 1~ as n — oo. Additionally, assume that there
exists a sequence of functions {y,(x),n > 1} for which y,(u,) — oo and

yn(Gn(xn)) =x,[1+ O(”I(xn))] (8)
holds for large n. Here,

n(x) =x""L(1/x),

with p > 0 being a constant and L(x), x > 0, a function that varies slowly at 0. Consequently,
n(x,) > 0asn — oo.
If Hy(x) is the inverse function of G,(-), then

Hy(un) = yn(un)[1+ O(n(yn(un)))]

for large n.

Proof: Recall that H,(x) is the inverse function of G,(-). For any n > 1 we have
Gu(Hp(un)) = un,
and thus

Yn(Gu(Hp(uy))) :}’n(“n)- 9)

Moreover, note that u, — 17 implying H,(u,) — oo as n — oo. By (8) and (9) we get

Hy(un)[1 + O(n(Hp(un)))] = yn(un) (10)
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for large n. It follows that I;[n”((—u“:)l — lasn — oo and hence
im 17 (Hy(un)) _
=00 71(yn(un))
by the uniform convergence theorem of slowly varying function, cf., Proposition 0.5 of

Resnick (2008). Consequently, combining (10) and (11) leads to the desired conclusion. The
proof is complete. |

(11)

In the following lemma, we provide the asymptotic expansion of the tail distribution func-
tion for a univariate skew-normal distribution with a n-varying skewness parameter. This
conclusion will be used later in the proof of the quantiles of the univariate skew-normal
distributions with n-varying skewness parameter in Lemma 4.3 and in the subsequent proofs.

Lemma 4.2: Let {a,,n > 1} be a sequence of real numbers and [a, b] be a fixed finite interval
bounded away from zero. For the distribution function F,, (x) of SN(a.,,), we have the following
results:

(1) ifa, > 0anday, € [a,b] C (0,00), then

2

F, (xn) = \/ge—z [1+0(x?)]

Xn
for large n;
(2) ifay, <0anday, € [a,b] C (—00,0), then
_(1+a%)x§,
e 2

Fa,, (xn) =

—1tan (1 + a2)x2 [1+0(7)]

for large n.

Proof: By integration by parts,
2¢ (x) @ (@ nxn) |:1 4 an  @P(anxn) ol x_2i|

Xn 1+ a2 ®(anx,) " "

Tjan (xn) =

2 ) o0
_%J;;n) /x ST3G(5)p (ans) ds + 6 /x AP D(ays)ds.  (12)

For x,, > 0, we have

1

1+ a2¢(xn)¢(anxn)x;4 (13)

0< /oo sT3P(s)p (ans) ds <

n

and

oy
1+a

0< /OO 5_4(}5(5)(1)(0(”5) ds < ¢(xn)q)(anxn)x;5 + 2¢(xn)¢(anxn)x;6- (14)



STATISTICAL THEORY AND RELATED FIELDS 17

Recall that
0,

Dx) = —= [1—x2 434 — 150 + O(x_s)] (15)
x
for large x, cf. Castro (1987). In the case of a, € [a,b] C (0, 00), we have x,¢ (a,x,) = 0

and @ (a,x,) = 1asn — oo. Hence, it follows from (12)-(15) that for large n,

Fo, (xn) = 20 Gon) @ (@) [1- %72 +0()] = \/ge_z [1+0(x?)].

Xn Xn

Similarly, in the case of a,, € [a, b] C (—00,0), we have a,x, — —00, and thus ®(a,x,) —
0as n — 00. By (12)-(15) we obtain

= 2¢ (x) @ (@ nxn) an P (anxn) 1 —2
F = — 7|1 (0]

an(xn) X + 1_’_0(% (D(Ocnxn)xn + (xn )

_(1+a%)x%
e 2
= 140 (x;,2
—1o,(1 + a2)x2 [1+0(57)]
for large n. The proof is complete. u

Lemma 4.3: Let F(;(x) denote the quantile function of SN(ay,), where {a,,n > 1} is a
sequence of real numbers, and [a, b] be a finite interval bounded away from zero for large n. We
have the following results:

(1) ifa, > 0anday, € [a,b] C (0,00), then for large n

t 2logt +1 logl
F;(l——)zm[l— ogt+logm + loglogn
n

4logn
(loglogn)? o loglogn
32(log n)? (log n)?

uniformly for t € [¢,1] withe > 0;
(2) ifay, <0anday, € [a,b] C (—00,0), then for large n

Fe 1_1 _ 2logn 1_logH—log(—ZTcozn)—}—loglogn
o n 1402 2logn

_ (loglog n)? 40 loglogn
8(logn)? (log n)?

uniformly for t € [¢,1] withe > 0.

Proof: To show this lemma, we shall use Lemmas 4.1, 4.2 and strategy similar to that used
in Section 3 of Fung and Seneta (2018).
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For a,, > 0, assume a, is bounded in the finite interval [a, b] C (0, 00). Similarly to Fung
and Seneta (2018), we take

yn(u) = {—log[—n(l - u)zlog(l - u)]}l/z, ue(0,1) (16)

for n > 1 to approximate the quantile function. Recall that x, — 0o as n — o0, and by
Lemma 4.2 and (16) we have

Yn (Fan(xn)) = Xn |:1 +0 (10g4xn):| . (17)

n

Letu,(t) =1—t/n,t € [¢,1] for e > 0. Hence, u,(t) — 1~ uniformly on [¢, 1] as n — oo.
By (17) and Lemma 4.1 we have

- AN ot loglogn
i (1=5) = (=) o (G )]

_ Jlogn |:1 _ 2logt +logm + loglogn
4logn

(loglog n)? loglogn
~ 32(logn)? +O ( (log n)? )} 1o

uniformly for t € [¢,1] as n — oo.
Similarly, for a,, < 0 and a, € [a,b] C (—00,0), set

2(1 —u)
1+ a2

log

1/2
)H  ue®1).

Using Lemma 4.2, we can verify that (17) holds for sufficiently large n such that F,, (x,) <
(1 + b*)/2, which s feasible since F,, (x,) — 0asn — oo. Consequently, by arguments sim-
ilar to (18) we can show that the expansion of Fo‘; 1- ﬁ) in the lemma for a < 0 holds
uniformly for ¢ € [¢, 1] and large n. The proof is complete. [

yn(u) = { |:—log (—Znan(l —u)

1+a2

Proof of Theorem 2.1: Assume first that 1 € [0, 00). We will focus on the case where 1 €
(0, 00), while the result for A = 0 can be verified in a similar manner.

For 1 € (0,00) and a > 0, set g,(t) = F,, (1 — %) and write g, = g,(1) when there is
no ambiguity. Since w, — 2a and 1 — 1/n — 1 in this case, we have g, — 00 as n — oo0.
Hence, we can find an integer N > 1 such that g, > 1 for n > N. For sake of simplicity,
assume g, > 1foralln > 1, otherwise we can set g, = max(qy, 1). This is reasonable because
we are more concerned with the limiting behaviour of the joint tail with sufficiently large .

Recall that X, 4 Y, ~ SN(w;). From the definition of )(,E] we have

n =
(e.¢]
n [ P(Yn=qnlXy=s)dFy,(s)

Xy? = P(Xn qn> Yn > Qn)

J

q
1

| P> 1% = g,09) (19)
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With the density functions given by (4) and (7), we can write

1 ¢ — pnqn(s) \ @ (a(t + ga(s))) dr
an V1-— pn J1 2 D (wnqn(s)) .

P (Yn > qn | X, = QV!(S)) (20)

Hence,

Y n=Pndn(s)
()
(D(a)nQn(S)) .
(21)

6(qn - ann(S)) (D(a(q” + q”(s))) <P (Yn 2 qn |Xn = qn(s)) =

V1-= p% D (wnqn(s))

Combining (19) and the bounds in (21) yields

ds.

6 (qn PnQn(S))
/15 Gn — puqn(s) \ ©(a(gn + gn(s))) ds < U < /1 J1-p2
0 =2 ) 0@ T Ty 0@.)
In the following we show that the upper bound and lower bound converge to the same limit.

Recall that for 1 € (0,00), we have p, = 1 and w,;, = 2a > 0 as n — oo. Thus w,, is
bounded away from zero for large n. Hence, it follows from Lemma 4.3 that

- 1
qn pnqn(s)_> 0g$_+_\/_ as 11 —> 00

Vi-pZ 2V

uniformly on [¢, 1] with ¢ > 0. Since w,q,(¢) > 0, we have

6 tI—pnqn (s)
A 1=p} 1
sup <
sele,1] (D(ann(S)) (D(wn%z(g))

>

and applying the Lebesgue dominated convergence theorem gives

. ) (t—pnqn(S)) .
' 1-p? / — (logs )
lim —ds = O —2+V1)ds
n=>00 J.  O(wngn(s)) e 2V

—2B(VI) — £D (loj_Jr«/_) (120%—«/1). (22)

Also, since @ (wnqn(s) > 1/2 holds uniformly for 0 <s <1 when # is sufficiently large, it
follows that for any 0 < ¢ < 1, we have

6 (t_PnQn(S))
e ) e f¢_
/ AV ) g z/ Q(M)ds < 2. 23)
0 0

O (wngn(s)) V1= p2

Combing (19)-(23) and by the arbitrariness of ¢, we get

lim sup ;{f < 20(V7).

n—oo
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Analogously, by arguments similar to (22) and (23), it can be shown that
liminf 7,/ > 2B(v/2),

which, combined with the limsup statement, proves the desired result.

Now we consider the case 4 € (0,00) and a < 0. Let V be a half normal distributed
random variable with density function

fv(v) =+ 2/me 2, v o.

For given & and R,, it was demonstrated in Azzalini and Valle (1996) that (X,,, Y,,) can be
represented as

X Y) " 4 8,V +,/1-02Z, (24)
with
-
8, =@ 5)1’_ a(l+ pn) a(l+ pn)
n — n>Yn - > bl
V142a2(1+ pn) 142021+ py)

where Z,, = (Z,1, an)T is a bivariate normal distributed random vector with mean zero and
correlation matrix

. pn — a2(1 — p)
v, — 14+ a2(1 = p2)
" pn— a2(1 — p) )
1+ a?(1 — p2)

Moreover, the random vector Z,, is independent of V. By Theorem 2.3 in Loperfido (2002)
we know that min(Z,1, Z,2) ~ SN(8,) with

P _\/(1 — pn) (1L +202(1 + pn))
n=— 1+pn 5

and thus it follows from (24) and the definition of )(HU in (5) that,

1Y =nP (5nV+,/1 —02Zu1 > qn, 00V + /1 = 02Zp > qn)

n—0nV Qn_gnv

q
=nE|P| Z) > —m.,Zp > ——
i (’“— S " m)}
N I . Qn_énv
=nE _P (mm(an,an) > ﬁ)}

—— qn — onV
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Noting that £, < 0, with arguments similar to those in the proof of Lemma 4.2, we can show
that for x > 0,

26O (Brx + - f;;zqs(x)qswnx)x—z — 23 () (B

< Fg,(x) < 2¢(x)D(Bpx)x~ . (26)
Denote z,,(v) = :l;l_—f_’;. Since z,(v) > O forall v € (0, c0) provided g, > 0, by (25) and (26)
we have !

N1 + Inp — Ing) < xy < nlyy, (27)

where

Iy =2 / B n ) Buzn()) 20 ()" fir () dv,

Loy = 7 + /3 / B (20 (V)P (Buzn ()2 (v) 2 fy (v) dv
and

Ins = 2/ ¢ (20 ()P (Bnzu ()2 (V) ">y (v) dv.

Next, we will calculate I, 1, I, » and I, 3 separately. Using integration by parts gives

_ N2 -5)° 9 _Bndn
= e () ()

© OnqnV 022 o\~
Dt — 1—— k,(v)dv |, 28
e (P e (5 ) (%) wne
where

n 5}’[ ! n“n
k() fv(V)H—( —q—”) —1_—V52}D<ﬁnzn(v)> fu 52¢wnzn(v)>]

; >

Considering that

<1+4a? and |6, + ﬁnln\/g_‘;(én) [\/(1 +402) /21 + 2]

for large n such that g, > 1, we have that for v € (0, 00),

n )| < v ) {1+ 40y — [ V(T + da2) /27 + 2]}

Thus with the fact that 6 < 0, we obtain

e OnGnV 022 S,v\ !
li ngn 9" N (1=-2") k,(md
im0 J e"p(l—é,%)“p( za—é,%))( a) O

< lim /oofv(v) [(1 + 402y — a(v/(1 + 4a2) /27 + 2)] dv < oo.
n— o0 0

1- 02
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It follows from the dominated convergence theorem that

) o0 Onqnv 0212 OnVv -1
1 _— S A — 1—— k dv =0. 29
Jim | eXP(l_ag)eXP( 20— ) g ) O (29)

Recall that w, — 2a < 0for A € (0, 00) and thus w, is bounded away from zero for large n.
Hence, using (28), (29), Lemma 4.3 and (1 — 5,%)(1 + a)ﬁ) = 1, we have

_ 20— )/ Pndn -2 0
Ing = — s ‘D(m 4, exp (‘W) (1+0(1))

| Bnan
=2n |:d>(\/1__5]%)+0(1)i|. (30)

Bn
V(14 p2)?

I3 = (nlogn)™! [cp (\/ff_&) + 0(1)i| (32)

Since §, — 2a/+/1 + 4a?, B, = 0and B,g9, — —~/A as n = 00 by Lemma 4.3, combin-
ing (27), (30)-(32) gives the desired result.
Now we consider the case where 4 = oo. Supposing o > 0 and p, is bounded away

from —1, then 0 < w, < 2a and w, is bounded away from zero for large n. Hence, for any
tﬂn Pndn(s)
l_pn
Consequently, by (17) and arguments similar to (22)-(23), we conclude that ¥ — 0 as
n — 0oQ.
For a < 0, we have 5, < 0, and it was shown in Capitanio (2010) that

IR O e WS S 7)) N
ﬁlﬁn|(1+ﬂ%)¢(x 1+ﬁ”)x ﬁlﬂnl3(1+ﬁ%)2¢(xvl+ﬂ”)x

_ V2 / _
< Fﬂn (x) < m¢ (x 14+ ﬂ%) X 2, (33)

for x> 0. Note that 6, < 0 and g, — oo as n — o0, implying z,(v) > 0 for v € (0,00) and
large n. By arguments similar to those used in the proof of the case 1 € (0,00) and a <
0, (19), (33) and Lemma 4.3 we have

n(Jn1 — Jn2) < XnU < nJp1, (34)

Similarly,

In,2 =

n (log m) /2 exp [ . (lﬁ"qu)} [1 + o(1)] (31)

and

& > 0, it follows from Lemma 4.3 tha — oo uniformly for s € [¢,1] as n — o0.

where

Jna = NGl I(l T )/ (Zn(V) 1+ﬂ%) zn(v)" fv(v) dv
_ V20 -t 1 __ B
— A+ BD? | Palgn eXp( 2(1 = 37)

) n~H1 + 0(1)] (35)
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and

2 o]
Juz = ﬁ€(|13:;3f’1ﬁ)2)2 / ¢(zn(v) 1+ﬁ,%) 20 ()~ () dv
N2 438D =) 1 i
= P —2(1—

JRA+E (Palan)® — )

) 1+ o(1)]. (36)

Note that £, and 9, are bounded and |f,|q, — 00 as n — 00. The desired result follows
from (34)-(36). The proof is complete. |

The proof of Theorems 2.3-2.5 requires higher-order expansions of the quantile of the
skew-normal distribution SN(a,). The following lemma provides a higher-order expansion
of the quantile function in Lemma 4.3. The proof is similar to that of Lemma 3.1 of Hu
et al. (2022) and is therefore omitted.

Lemma 4.4: Let F; (x) be the quantile function of the univariate skew normal distribution
SN(ay), and {ay, n > 1} be a sequence of real numbers.

(1) If there exists a positive integer N such that o, € [a,b] C (0,00) when n> N, then as
n— oo,

t log(mlogn) log(mlogn) —2  (log(mlogn) 2
F:- (1—;):,/210gn 1— g4lo 5 BT 06 = ( 2)
g 8 (logn) 32 (log n)

_ logt |:1+logt+log(nlogn)—2:|+O((logn)_;)

2logn 4logn

holds uniformly on t € [1/logn, 1].
(2) If there exists a positive integer N such that a, € [a,b] C (—00,0) when n> N, then as
n — 00,

- t 2logn log(—2ma,logn)  log(—2may,logn)
Fo, \1 =)= 211 + 2
n 1+a2 2logn 2 (log n)
[log(—Zchn log n)]2 3aﬁ +1 1
8 (log n)2 4oj;  (logn)?
1 logt ll 4 logt + 2[log(—27ay, logn) — 2] }

- JV1+a?2/2logn
+o ((logn)_%)

4logn

holds uniformly on t € [1/logn, 1].
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Proof of Theorem 2.3: Consider the case a > 0. For s € [0, 1], by (20) we have

P (Y, > qul|Xn = qu(s))

) (q,,p—nqn(s)) [‘D(wnqn(s))]_l

=02
! 1 = pn‘]n( )
B eyl n(s)))d
V1= p2 ©(@4gn(s)) Jy, ¢( JSi-p )‘D(a(t+q (s))) dt
n1(s) + K2 (5). -

We will address these two parts separately in the following.
When a > 0, it follows from Lemma 4.4 that

Gn = Pnn(s) _ logs +ﬂ—n+loglogn(logs \/1_)

V1—p2 22 4logn \ 27,
N (logg)2 + (log — 34, — 2) logs N 2 Ay — log ) N ( 1 )
o —
8/ 7nlogn 4logn logn
An—pngn(s) _, logs

holds uniformly on s € [1/logn, 1]. Since ﬁ N/ V4 as n — oo, expanding

E(L\/”_q”z(s)) at the point 1055 + A A using the Taylor series with the Peano remainder, and

_logn
oglogn

o272 ) =0 (3% 1) -0 (3% ) (-9
+10£(L_L)+loglogn(logs —Ji_n)

by the assumption that ;3= —(1, — 4) — 7 we have

2 VI, V7 4logn \2J/1,
log s logn—3/1,,—2+logs V2n(hn — log )
2/ 4logn 4logn

to ( ! )} (38)
logn

holds uniformly on s € [1/logn, 1].
Since w,qn(s) — oo holds uniformly on s € [0,1] as n — 00, from (15) we know that

) (a)nqn(s)) = i exp [4a2(1 + 2a2)/1n] no? (mlog n)z"‘ —3st0’ (1+0(1))

B logs 1
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holds uniformly on s € [1/log#, x]. Thus combining (38) with (39) gives

Ky (s) = @ (@—&@@)U—&m%wﬂm@mmmmrl

N
:5(;0%+ﬁ) —¢(;O%+ﬂ)
[ Lol =l

logs 1 1 log(mtlogn) — 34, —2
~toes (74 9) (57— 7)™

it (207 = (e ()

uniformly for s € [1/logn, 1].
For sufficiently large n, applying Mill’s inequality to K, »(s) we have ®(x) < ¢(x)/x for
x> 0. Note that for s € [1/log n, 1] we have

1 1 L
exp [—azqn(S)t] <1, exp (_Eath) < exp (—Eazfﬁl) > T/qn(S) <1

For t > q,, using Lemma 4.4 we get

1 t — pnqu(s) \ ¢ (a(t + qn(s)))
; < d
a0l = ‘MQJ(wnqn(s)) /n ¢( J1-p2 ) a(t + qn(s)) t'
- ! exp [——a q (S)} ' (s)
o211 — p? (D(wnqn(S)) 2 ’
oo _ —1
x /n ¢(—t \/%))exp [—%aztz - 062%(5)1‘] |:1 + q,,t(s)] dt
1 1 1, -1
Sawﬁmwwm»mﬂ “[%®+%”%(”
—0 (n_zaz(log n)az-l/z) (40)

uniformly on s € [1/logn, 1].
In view of the expressions of K, 1 (s) and K;, »(s) we obtain

! 1

logn ogn

1 1
=/1[ Kn1(s) — (li“’;f+~/_)}ds+/11<n,2(s)ds

logn logn

|y S,

4logn
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[( 1 1 ) log(mtlogn) — 34, — 2] )
- — r
270 2V 8+/Anlogn !
1 2 2
_ y) 0 —2a 1 o —1/2 ,
S/ o 1)+ 0 (172 togm 1)

where 7, (1), k = 0, 1, 2 are given by
(i)

mo(2) =/1 ¢(;°%+ﬂ) dsﬂﬂ[“’ (-v%) “D(_lzg—ggn _ﬂ)]

- 2/10 (—ﬂ) ;

logn

(ii)

1
r,,jl(/l)z/l ¢(loﬁ+ﬂ) logsds

me o \2V4
_ 4 [ﬁ@(—ﬁ) _Jio (% - ﬁ)
o ()

> 42 [Vio(-VD) - 6 (VD);
(iii)
_ ' logs 2
ma(4) = /10;,, ¢ (Zﬂ + «/E) (logs)* ds
— 82322 — 1) (=V7) — 822 (ﬁ)

—logl
— 41 (M - ﬁ) loglogn

2V
—loglogn —loglogn
+81° ( —ﬁ) — 8720 (——ﬂ
¢ 2V NG

5 8132(1 = 1)®(—/7) — 8224 (ﬂ) .

Since as n — 00,

logn

o7
/ p (Yn > qn| Xy = Qn(s)) ds <
0

0
loglogn ~ loglogn ~
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logn ! logs
d
loglog n [/1; ( f+f) T

logn [ 1 _(—loglogn ) _(—loglogn )]
- -— +VI) -0 —==—+ V2
loglogn | logn 2V 23/

and

- 0,
by assumption lolg)lgo gn (An — A) = 7, we have
1
Cn (v An = \/I) = Cn [Ei_é (An—=A)+o0 (6;1)] - 2327

and

1 1 1,3 14
cil——-—=)=c,|—=2"2A,—A)+o0 ]%——.
(- a) el e vrean] - 4
Hence, with (19) we know that as n — oo,

logn

U —
loglogn (X" XU)

logn ! logs
loglogn {/ [P (Y = n | Xn = qn(S)) (2\/7 * ﬁ):| ds}

logn

logn ! logs
[ ds —
+ foglogn [/1; (2ﬂ+f) s— v

logn

loén
1 / p (Yn > qn | Xy = Qn(s)) ds
oglogn Jo

%(g_%)qﬁ(ﬁ).

The proof for a > 0 is finished.
Now we consider the case where a < 0. For any v € (0, 00), we have as n — oo,

%‘51’ dn
V1 —52 V1 —52

Similarly to Lemma 4.2 it can be shown that
-1
- [ gn—0nv qn — OnV Gn — OuV Y [ Gn — Onv
Fp | =t ) =29 2= )o( i
() () (=) (=)
-2
2B OnV OnVv qn — Onv
+1+ﬂ£¢( —)45(5;1\/1 )(\/1 ) [1+0(1)]

-3
B qn — OV Y qn — OnV
w522 (5222 o
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holds uniformly on v € (0, 00). Hence, by (25) we have

-1
U _ dn 51/ qn_énv
Xn —Zn/o ¢(m) (ﬂn/l——éz)(m) fv(v)dv
-2
2nfy, o0 qn—énv Onv Qn_énV
+1+ﬁg/0 ¢( #1_5%)45(13;1\/1 )(\/1_55) fr(¥)dv[l + o(1)]

-3
B © qn — OnV OnV qn — OnV
o [ (5o (=5 o

:=1Lp1+ L2+ Lys. (41)

We compute each term of L, 1, L2 and L, 3 in turn. Noting that f, < 0 and J, < 0, by
applying integration by parts to the first part, we obtain

2n (1 — 52)3/2 qz _ > _ OnqnVv
T a6 P |: 2(1 = 5%)] ) () |:exp (1 —J;
2n(1 — 52 3/2 2
__”( ) o Pndn 02 exp [_ 9n . :|
X o S 20- %)
2n (1 — 5%)3/2 9 _ /°° Onqnv \ |-
%) ___n d
Jm o | Taa-op ), oP\i=g) )

= Ly11 + L2, (42)

where

522 - On
= [ Jo (2 Joon (-5)

We firstly consider the term L, ;1. According to the definitions of £, in (6) and 4, in (2) we
know that fora < 0,

An(1 + 4a? 1 2 A
By = — 1Liﬁjp+(__ az) n
2logn 4 1+40?) logn

3 B a* /lfl 0 iz (43)
'%5 m+wwkmw+ Q%wﬂ‘
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Substituting the expressions for g, £, and J, in (43) gives

2
Pudn :—\/ln(1+4a2)[1+(‘—11 a—) An

V=% ~ 1+402) logn
log (—27tw, log n) |: 3 at :| 22
2logn 32 2(1+40?) | (logn)?
( 1 a? ) An log (—2nw,logn)  log(—2mw,logn)
4 1440?) logn 2logn 2(logn)?
[log (—27mtwy, log n)1? 302 + 1 1
B 8(log n)? 402 (log n)? 0 ((log—n)z) } ’

Hence, as n — oo,
Pndn — —A(1 + 4a2).

ﬁnq;'l

A/ 1-62

Applying the condition bgl?ﬁ(ln —A) = y € R and expanding ®(
—+/A(1 + 4a?) by Taylor expansion we have

) at the point

q)(\/j”—f_”é%) _ (—\/1(1 +40%)) + V1 + a2 (\//1(1 +4a)) (\//1_,1 - «/I)

2
~ V(U + 4a2)g (VA +402)) [(3— - z) .

4 1+4o

log (—2mw, 1
_og( T, logn) +0( 1 )
2logn logn

Therefore,

8logn logn
— 21 + 4024 (\/1(1 +4a?)) (\/Tn - «/Z)

+ 2 7,(1 + 402y (\/A(l +4a2) log (_?:ga: logn) | o (@) L (44)

log (=27, 1 2 _
Ln,11:2®(_,/,1(1+4a2)){1+[Og( T, log )] +10g( annlogn)]

Now we consider L, ;5. Using integration by parts again implies
o0 0 21-82|9 0
/ exp( nQrﬂ;) dk,,(v) _ \/j ' _n(D ,BnQH _ ﬂn n ¢ ﬁnQn
0 1—-o0; T Onqn | qGn \/1—5,% \/1_5% \/1_5%

1—062 [ OndnV'\ -
— d .
o /0 exp (1 iy iKn(v)
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Since d, < 0 and S, < 0, we have that for v € (0, 00), exp((i"_qg;) <1, exp[— 2(1 62)] <1
and (1 — 6,v/q,)~! < 1. Direct calculation gives
° 2
/ exp ( duld ) Era(v)| < 0(g; ).
0

Due to the fact that g, — 00, 8, = 0and J, = 2a/+/1 —4a? asn — oo,

2n (1 — 62)°? T 1
Lyl < = . - 1 —). 45
| }’l,12| — T 51%q;1[ eXp|: 2(1 52)] ( ) _ (logn) ( )

Using similar arguments to L, » we have that for sufficiently large n,

n _5%2 - V1 wdn
Ly, =-2 lfﬂz(lut—én)q”3¢( \/;;Z ) 1+ o(1)]

= Vi 262 (Va0 + 40D (1 + o(D)] (46)
ogn

and

1—62)%2 nn 1+ B

= 0 (~Vill + 1a2) %[1 +o(1)]. (47)
ogn

Hence, by (41) and the expansions of Ly, 11, Ln,12, Ln and L, 3 in (44)-(47), it follows from
the assumption k’i(.//l —/2) = y that
p (loglog n)? n y

logn U logn
5 — —_ %" 1 I [
(lOg IOg n)z (Xn XU) (lOg lOg n)z ( m1+ Lu2 +Lys XU)
1 y
Z — 2nNY _ D) 3
- 4(1)( VA1 + 4a )) ﬂ\/l+4a ¢(\/,1(1+4a ))
as n — 00. The proof is complete. -

Proof of Theorem 2.4: For o > 0, noting that 4, — 0, 1,loglogn — oo as n — oo, it
follows from Lemma 4.4 that

3
4= pndn() _ logs - (loglogn)’ logs  u
V1—p2 2/ An ! 4logn 2\//nloglogn  /loglogn

4 J/loglogn (10g5)2 + (logm — 34, —2) logs N ( 1 )
O —

logn 8,/Anloglogn VZnlogn
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uniformly on s € [1/logn, 1] and tends to infinity uniformly. Thus, similarly to the proof of
Theorem 2.3 in Hu et al. (2022), we know that for sufficiently large n

1
/1 @ qn_ann(S) ds= @ l—pnq 1 o q”_p”q”(logn)
dn — FnAni>) — / L) -
Iog V1=rp; 1+ pn log n V1=p2
1

%—m%@)
— sdo| ————
/Ioén ( V1i=pi

— 4 4o, (48)
T

Analogously, by the definition of w, in (6), we have

1 A A
(W:ZaP—(—+aﬁ - +o( ”)} (49)
2 logn logn

as n — 00. Hence, further by Lemma 4.4, we get

1 logl 1 1
wnqn(s)=2a\/210gn|:1— ogT + oglogn _ ogs +0( )i|

4logn 2logn logn

Applying (15) yields

_ 21 402
[0) (a)nqn(s)) = ﬁ(n log ) (%) [1+0(1)] (50)

uniformlyon s € [1/logn, 1]. Integrating the right end of the above expression from 1/ log n
to 1 implies

1
_ 1
X () (a)nQn(S)) ds = —4a(1 n 4a2)

logn

n= (log n)*** =2 [1 + o(1)]. (51)

From the proof of Theorem 2.3 we know that P(Y, > g, | X, = gn(s)) has the expres-
sion (37). By (48), (50) and (51) we have that for sufficiently large n

! - n — Pnqn(s) = —
K@@&:/‘Q(L—&i—)U—M%%®H1¢
/loén 1 loglgn \ 1- p%

-/ 1 6(%__‘;2@) [1 = ®(©10:(5) + O (@ (@iga(5))) | ds

logn

1 ! dn _ann(S)
=1- - O ———— |ds
logn ‘/mén ( V1=p2

- /11 D (0pqu(s))ds + O ((log n)4"2_1n_8“2)

logn

=Lqﬁﬁﬂ+dm.
T
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It hence follows from (40) that

1

1 Ku2(s)ds =0 (n—2a2 (log n)“z_l/z) =0 (\//l_n) .

logn

Since
1

Togn
/ P(Yy > qn| Xn = qn(s)) ds <
0

—o(V2).

logn
combining (37) with (19) gives

The proof for o > 0 is finished.
Ifa <0, )(,EJ has the expression (41). By the expansion of f, in (43) and Lemma 4.4,

log (—2 1 1
Pran  _ _ 4D | 1- og (—2mw, logn) +o( ) ‘
/1—5% 2logn logn

Hence, 2292 5 0 asn — oo. Applying Taylor’s expansion to @ ( Bndn ) at the point zero
A 1-82 A/ 1-62
gives

Bnan _l_# 5 3/2
(D(m)_Z m\/(1+4a )A,H—O(/ln )

Similarly to the proof of Theorem 2.3, substituting the above equation and the expression of
qnin Lemma 4.4 in L, 1 gives

2
Lon=1— \/;/(1 t 4024, 4+ O (12/2) .

Similarly to the proof of (45)-(47), we can show that under the assumption (45) of the
theorem,

Ly = —/ (1 + 4a2)And (\/(1 + 4a2)/1n) @[1 + o(1)]

and

L 1 1+ 40%) A,
= ——exp|—
m3 = 75 CXP 2

:| ! [1+o(D)].
logn

Thus, with (45) we have

2
1Y = qu=Lp1 4+ Los+Lns — v = —\/;\/ (1 +402)Au[1 + o(1)].

The proof is complete. u
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Proof of Theorem 2.5: Consider first the case where o > 0. By assumption log)iggn — Oand
Lemma 4.4 we have that as n — oo,
dn — Pndn(s)
Vi=p;
3 3
1 loglogn)? logs A An)2
_ logs -, (loglogn) g VW, C)?
2 4logn 2//nloglogn  /loglogn (loglogn)>

3
N (logs)2 + (logm —2)logs  3./2,logs N yE
—_— 0 —
8 Anlogn 8logn logn

uniformly on s € [1/logn, 1]. Hence,

b= 9n = Pndn(s) _\/7 1 An

logn n

By (49) and Lemma 4.4 we obtain

1 A log(nl 1 1
ann(5)=20(w/210gn|:1—(E+a2) n__ log(mlogn)  logs +0( )]

log n 4logn 2logn logn

and

B (00gn(s)) = i exp [462(1 + 20%) 2, ] (s log >~ (%)4“ 1+ o(1)]

uniformly on s € [1/logn, 1]. Thus,

_ 1
/1 6(%1/)—\/_"_1:2(5))5(@”%(5)) dss/1 D (wngn(s)) ds

=0 (n—4a2 (log n)zaz_% exp [4a2(1 + 2052)/1,1])

(Gm(2)

And furthermore,

logn

- qn_pnqn(s) —
Q(—m )[1 + O (® (wnqn(s)))] ds

1
= qn_pnqn(s))
= O ——————= )ds
/bzw ( Vi=p;

- Qn—PnQn(S) =
-i—/1 @(—m )(D(conqn(s)) dsO(1)
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Since in the same manner to (40) we can show that

1 A
< 0 (n 2" (logm™~2) = o (w— =P (_Tn)) ’
n
1

logn 1 1 ln
P(Y,>qgu| Xy =qn ds < = ).
[Tz a3 =) as < o Smew (<3))

Therefore, with (37) we have

1
1 Ky 2(s)ds

logn

and

1 g7
Xrgj=/1 P(YHEQH|XH=QH(5))dS+/O : P(Ynzqn|Xn=qn(S))dS

logn

2 1 An
=\/;mexp(—7) [1+4+0(D)].

The desired result for a > 0 is proved.

Bngn _ :
If o <0, we have = — —00 as n— 00. By Lemma 4.4 and the assumption
logﬂlggn — 0 we know that
A log (—2 1 1
Bnn __ //1,1(14—4012) 1+ n _ Og( Tty Ogn) +O( )
/1— o2 4(1 + 4a?)logn 2logn logn

as n — 00. Thus, it follows from (15) that
o P \_ o (VTHIOL) I N
J1=2) /U + ), [_(1+4a2)1n+ (1_2)]
Hence, with (42) we get
2 (VI +4a2)7,) 1 . o2
T s to(3))

In the same way, we can obtain the expression (45) of L, 2. Moreover, using the same
arguments as that of (46)-(47) to L, and L, 3 yields

Ly =

Lz =~/ + 4y (VAT 4aD)7) = 1+ 0()]

logn
and
V21 5 1
Ly = = ? (VU + 402 2 ) ——[1 + 0(1)].
> /(1+40€2)/1n¢ ( )logn
Hence,

erj = Ln,l + Ln,2 + Ln,3 =

2¢(,/(1+4a2)1,1) ) (1
VA + 4a?) 2, [1_(1+4a2)1n+ (1_2)]

n
The proof is complete. u
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