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ABSTRACT
Kriging models are widely employed due to their simplicity and flex-
ibility in a variety of fields. To gain more distributional information
about the unknown parameters, we focus on constructing the fidu-
cial distribution of Krigingmodel parameters. To solve the challenge of
constructing the fiducial marginal distribution for the spatially related
parameter, we substitute the Bayesian posterior distribution for the
fiducial distribution of this spatially related parameter and present a
quasi-fiducial distribution for Kriging model parameters. A Gibbs sam-
pling algorithm is given toget the samples of thequasi-fiducial distribu-
tion. Then amodel selection criterion based on the quasi-fiducial distri-
bution is proposed. Numerical studies demonstrate that the proposed
method is superior to the Lasso and Elastic Net.
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1. Introduction

With the rapid development of science and technology, computer experiments have emerged
as a prominent method, increasingly replacing physical experiments due to their cost-
effectiveness and significant impact on scientific research. To better simulate physical phe-
nomena, Sacks et al. (1989) proposed modelling the response of computer experiments as a
stochastic process model–Kriging model, which allows for uncertainty estimation in deter-
ministic computer simulations. This model was also utilized by Welch et al. (1992) in their
research to avoid overfitting and by Simpson et al. (2001) to fit higher-order and lower-
dimensional functions. Besides, it is attractive for Kriging model to model the computer
simulation response as a spatially related Gaussian process and suitable for many kinds of
modelling.

The Krigingmodel generally consists of two components: amean function and aGaussian
process (typically a stationary process). Krigingmodel is called ordinary Kriging (OK)model
when the mean functionm(x) has only one constant, and it is called universal Kriging (UK)
model when the m(x) is partially assumed to have some known variables. The former is
parametric while the latter is semiparametric. The UK model allows the mean function to
include known basis functions, making the UK model more flexible in handling complex
problems. The number of input variables can be large, but not all variables are useful. In
other words, not all input variables significantly affect the response variable. It is meaningful
to identify variables with a significant impact on the response as it simplifies the model to
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avoid overfitting, and select significant variables to enhance model interpretability and save
experimental resources.

The identifiability problemhas been addressed bymany researchers (Hodges&Reich, 2010;
Paciorek, 2010; Tuo &Wu, 2015). For example, in model calibration, due to the existence of
parameter identification problems, we cannot correctly interpret the actual meaning of each
variable from the coefficient of the mean function, and sometimes we even misrecognize
the part of the mean function, so as to get the opposite conclusion. There are some relevant
research results on the model selection of mean function. Joseph et al. (2008) provided the
blind Krigingmethodwhich integrates a Bayesian forward selection procedure into the Krig-
ing model. Hung (2011) proposed a penalized blind Kriging approach. Recently, Park (2021)
and Zhao et al. (2023) proposed the penalty likelihood method.

Distinguished from the frequentist and Bayesian approaches, fiducial inference has
become a popular and highly regarded leading method, which extends fiducial inference
by using the inverse function of the data-generating equation to define an estimation of
distribution of parameters. Hannig (2009) provided a detailed exposition and analysis of gen-
eralized fiducial inference (GFI). Furthermore, Hannig (2013) demonstrated the asymptotic
exactness of fiducial confidence sets under general conditions. Cui et al. (2024) proposed a
semiparametric fiducial approach recently which was designed for survival analysis mod-
els. As fiducial theory develops, model selection methods based on fiducial inference have
also emerged, providing probability guarantees for each candidate model being the optimal
model. Williams and Hannig (2019) and Zhao et al. (2023) proposed some fiducial model
selection criterions to deal with high-dimensional linear regression, respectively.

The remainder of this paper is organized as follows. Section 2 presents the quasi-fiducial
distribution for universal Kriging models. In Section 3, we introduce the theoretical frame-
work and algorithm steps of quasi-fiducial model selection for Kriging models. Section 4
compares the performance of the new method with traditional model selection methods:
Lasso and Elastic Net (EN) through numerical simulations and case studies. Section 5
concludes this paper.

2. Methodology

2.1. The universal Krigingmodel

Suppose inputs xi is a design point on the d-dimensional test regions and yi = y(xi) is the
corresponding output response, i = 1, . . . , n. Let x = (x1, . . . , xn), and then the universal
Kriging (UK) model is defined as

yi = m(xi)+ z(xi) = f (xi)�β + z(xi), i = 1, . . . , n, (1)

where m(·) = f (·)�β is the mean function, f (·) = (f1(·), . . . , fp(·))� is a known basis func-
tion vectors, β = (β1, . . . ,βp)

� is an unknown regression coefficients, and z(xi) is a zero-
mean Gaussian process with covariance σ 2rφ(xi, xj) between xi and xj. There are many
different kinds of basis functions. For example, we could set f (xi) = xi = (xi1, . . . , xid)� for
simplicity.

Let Y = (y1, . . . , yn)�, F = (f (x1)�, . . . , f (xn)�)� and Z(x) = (z(x1)�, . . . , z(xn)�)�.
UK model (1) could be rewritten as

Y = Fβ + Z(x),
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where Z(x) ∼ N(0, σ 2R(φ)) with R(φ) = [rφ(xi, xj)]. The correlation function rφ(xi, xj) is
related to the spatially relevant parameter φ, and the commonly used one includes the power
exponential correlation function, the Matérn correlation function and the Gaussian corre-
lation function. Although several correlation functions are available, we consider the power
exponential correlation function in this paper, which is perhaps the most commonly used
correlation function,

R(φ, xi, xj) = corr(Z(xi),Z(xj)) =
d∏

k=1
φ
|xik−xjk|2
k ,

where φ = (φ1, . . . ,φd) ∈ (0, 1)d.
To effectively capture the overall trend, important regression coefficients β should be

selected for a more accurate mean. LetM = {M |M ⊂ {1, 2, . . . , p}} be the set of all models
and |M| be the cardinality of the setM, and θM = (β�M , σ 2

M ,φ�M)�. For the candidate model
M, we have

Y = FMβM + ZM , (2)

whereZM ∼ N(0, σ 2
MRM)withRM = R(φM) = [rφM (xi, xj)], the designmatrix FM is defined

as the matrix composed of only those columns of F corresponding to the index set M, and
βM is a |M|-dimensional vector indexed by the subsetM.

The likelihood of the Kriging model (2) is

L(θM | y) = (2πσ 2
M)−

n
2 |RM|− 1

2 exp
{
− 1
2σ 2

M
(y− FMβM)�R−1M (y− FMβM)

}
. (3)

Thus the MLE of θM is

β̂M = (F�MR−1M FM)−1F�MR−1M Y , (4)

σ̂ 2
M =

(Y − FMβ̂M)�R−1M (Y − FMβ̂M)

n
, (5)

φ̂M = argmin
φ

{
log|RM| + nlog(σ̂ 2

M)
}
. (6)

The MLE algorithm of parameters is shown in Algorithm 1.

Algorithm 1 (The MLE algorithm of parameters in universal Kriging model)

Input: Data(xi, yi)|ni=1, randomly given initial values φ̂0 , t = 0: Step 1: Substitute φ̂t into
Equations (4) and (5) to get β̂t+1 and σ̂ 2

t+1. Step 2: Substitute last obtained β̂t+1 and σ̂ 2
t+1

into Equation (6) to get φ̂t+1, and then we get a group of estimator (β̂t+1, σ̂ 2
t+1, φ̂t+1). Step

3: t = t + 1. Step 4: Repeat Steps 1–3 until β̂M , σ̂ 2
M and φ̂M all have converged.

Based on the result, we can get the best linear unbiased prediction (BLUP) of the new
sample x∗

ŷ(x∗) = f (x∗)β̂M + r̂�M(x∗)̂R−1M (y− FMβ̂M),

where R̂M = R(φ̂M) and r̂M(x∗) = (rφ̂M
(x∗, x1), . . . , rφ̂M

(x∗, xn))�.



4 C. FAN ET AL.

2.2. The quasi-fiducial distribution for Krigingmodel

The fiducial inference was originally introduced by Fisher, which aims to construct a statisti-
cal distribution for the parameter space without the prior information. The key point is that
any observation Y can be regarded as the outcome of the structural equation

Y = G(M,UM , θM), M ∈M, θM ∈ �M , (7)

where the distribution of UM is completely known and independent of θM . If Y = y is
observed and the inverse G−1 for θM exists, a distribution of θM can be defined by inverting
the structural Equation (7) as follows:

θM = G−1(M, y, uM).

A set of random samples called the fiducial samples of θM is obtained if UM is repeatedly
sampled.

Let Ỹ = R−
1
2

M Y , F̃M = R−
1
2

M FM and εM = R−
1
2

M ZM . Equation (2) could be rewritten as

ỸM = F̃MβM + εM , (8)

where εM ∼ N(0, σ 2In).
When φM is known, the Kriging model (8) is indeed a linear regression model. Zhao

et al. (2023) proposed a fiducial density of parameters based on the sufficient statistic. Similar
to the results in Zhao et al. (2023), we have

r(βM | σ 2
M ,φM , y) = (2πσ 2

M)−
|M|
2 |F�MR−1M FM| 12

× exp

(
− (βM − β̂M)�(F�MR−1M FM)(βM − β̂M)

2σ 2
M

)
(9)

and

r(σ 2
M |φM , y) = (σ 2

M)
−

(
n−|M|

2 +1
)

2
n−|M|

2 �
(
n−|M|

2

)RSSM n−|M|
2 exp

(
−RSSM

2σ 2
M

)
, (10)

where RSSM = nσ̂ 2
M , β̂M and σ̂ 2

M are given in (4) and (5), respectively. Thus, the joint
conditional fiducial density of (β�M , σ 2

M)� for known φM is

r(βM , σ 2
M |φM , y) = r(σ 2

M |φM , y)r(βM | σ 2
M ,φM , y)

= π−
|M|
2

2
n
2 �

(
n−|M|

2

)RSS n−|M|
2

M |F�MR−1M FM| 12 (σ 2
M)−

n
2−1

× exp

{
− (y− FMβM)�R−1M (y− FMβM)

2σ 2
M

}
. (11)

When φM is unknown and the fiducial distribution r(φM | y) is given, we could obtain the
joint fiducial density of θM as follows:

r(θM | y) = r(φM | y)r(σ 2
M |φM , y)r(βM | σ 2

M ,φM , y).

However, it is infeasible to directly obtain the fiducial distribution r(φM | y) since there is no
analytical solution for the partial derivatives of the structural equation with respect to φM . It
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is worth noting that the fiducial distribution and the posterior distribution are distributions
of parameter for given observed value.

In this paper, we suggest to use the conditional Bayesian posterior distribution of φM
instead of its conditional fiducial distribution to obtain the Fiducial distribution of θM , which
is called the quasi-fiducial distribution of θM . Then the following results can be obtained.

Theorem 2.1: We assume that the prior of φM is π(φM), and it is independent of (β�M , σ 2
M)�.

The full conditional quasi-fiducial distribution of θ can be expressed as follows:

(βM | σ 2
M ,φM , y) ∼ N(β̂M , σ 2

MF�MR−1FM), (12)

(σ 2
M |φM , y) ∼ IG

(
n− |M|

2
,
RSSM
2

)
, (13)

r(φM |βM , σ 2
M , y) ∝ |RM|− 1

2 exp

{
− (y− FMβM)�R−1M (y− FMβM)

2σ 2
M

}
π(φM). (14)

Proof: For given φM , (12) and (13) could be obtained by (9) and (10), respectively.
For given (β�M , σ 2

M)�, since π(φM) is independent of (β�M , σ 2
M)�, the Bayesian posterior

distribution of φM for given (β�M , σ 2
M)� is

r(φM |βM , σ 2
M , y) ∝ L(θM | y)π(φM)

= (2πσ 2
M)−

n
2 |RM|− 1

2 exp

{
− (y− FMβM)�R−1M (y− FMβM)

2σ 2
M

}
π(φM)

∝ |RM|− 1
2 exp

{
− (y− FMβM)�R−1M (y− FMβM)

2σ 2
M

}
π(φM),

where L(θM | y) is the likelihood function in (3). We use r(φM |βM , σ 2
M , y) instead of its con-

ditional fiducial distribution of φM . Then the full conditional quasi-fiducial distribution of θ
could be obtained. �

Since φk ∈ (0, 1), U(0, 1) is chosen as the prior of φk to ensure computational efficiency
(Huang et al., 2020). Therefore, we could adopt this prior in our study. Once the conditional
quasi-fiducial distribution of φM is determined, fiducial samples can be generated in a man-
ner similar to the Bayesian approach. With an initial value, the Gibbs sampler (Shao, 2010)
can be used to generate the quasi-fiducial distribution of θM by repeated successive sampling
from (12) through (14), which is detailed in Algorithm 2, and the obtained samples are called
quasi-fiducial samples. The initial value φ0 is given in the next algorithm which is the max-
imum likelihood estimation algorithm for the parameters. For Algorithm 2, sampling from
r(βM | σ 2

M ,φM , y) and r(σ 2
M |φM , y) is relatively straightforward, nevertheless sampling from

r(φM |βM , σ 2
M , y) remains challenging because it does not have a precise analytical form and

is only known to be proportional to a specific known function. So we can address the issue
by employing the slice sampling method from Neal (2003). The slice sampling method for
the conditional fiducial distribution of φ is shown in Algorithm 3.
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Algorithm 2 (A Gibbs sampler of the quasi-fiducial samples of θM)
Input:Data(xi, yi)|ni=1, initial valuesφ0, number of samplesT, threshold parameter n1, t = 0:
Step 1: Draw the fiducial sample σ 2

M;t of σ
2
M according to Equation (12) .

Step 2: Draw the fiducial sample βM;t of βM according to Equation (13). Step 3: Draw
the fiducial sample φM;t of φM according to Equation (14) and obtain the new sample
(βM;t+1, σ 2

M;t+1,φM;t+1). Let t = t + 1. Step 4: Repeat Steps 1–3 until t = n1 + T Output:
The quasi-fiducial samples (βM;n1+1, σ 2

M;n1+1,φM;n1+1), . . . , (βM;n1+T , σ 2
M;n1+T , φM;n1+T).

Let r(φM | y) and (φM;1, . . . ,φM;T) be the quasi-fiducial distribution and a sample of φM ,
respectively. The joint quasi-fiducial density of (β�M , σ 2

M) is

r(βM , σ 2
M | y) =

∫
r(βM , σ 2

M |φM , y)r(φM | y) dφM , (15)

which could be computed by 1
T

∑�
t=1 r(βM , σ 2

M |φM;t , y).

Algorithm 3 (The slice sampling method for samples of φM)
Input: The function r(φ|β , σ 2, y), the initial values φ0 = (ϕ0,1, . . . , ϕ0,d),H = (L1,R1)×
· · · × (Ld,Rd). Step 1: Draw a random value z from U(0, r(φ0|β , σ 2, y)) and define a set
S = {φ ∈ R

d : z < r(φ|β , σ 2, y)}. Step 2: Draw sample φ∗ from the set S and insert the φ∗
into the following While loop :
While r(φ0|β , σ 2, y) < z :

For i = 1, . . . , d :
if ϕ∗,i < ϕ0,i, then Li← ϕ∗,i ;
or Ri← ϕ∗,i.

End;
Resample φ∗ from the updated H;

End.
After completing this loop iteration, the updated φ∗ is our new sample φ1.Output: The new
sample φ1 = (ϕ1,1, . . . , ϕ1,d).

3. The quasi-fiducial model selection

A fiducial model selection method for high-dimensional regression was studied by Zhao
et al. (2023) and proposed the following definition of fiducial marginal likelihood function.

Definition 3.1: Let L(θM | y) be the likelihood function of the observed sample under the
Mth model and r(θM | y) be the fiducial distribution of θM . Define

Pr(y |M) �
∫

�M

L(θM | y) · r(θM | y) dθM .

We call Pr(y |M) the fiducial marginal likelihood function (FML).
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Assuming that the priors π(M) of all models are uniformly distributed, then

Pr(M | y) = Pr(y |M)π(M)∑
M′∈M Pr(y |M′)π(M′)

∝ Pr(y |M).

Pr(M | y) can be used for model selection and inference because Pr(M | y) reflects which
model the observed sample more likely comes from. In the following, we give the FML for
the UK model (2).

Theorem 3.1: Assuming the quasi-fiducial distribution of φM is r(φM | y), the FML of
model (2) can be expressed as follows:

Pr(y |M) ∝ EφM

{
EβM |φM

{[
(y− FMβM)�R−1M (y− FMβM)

]− n
2
}
|RM|− 1

2

}
, (16)

where the expectation EφM is taken with respect to the quasi-fiducial distribution of φM, and the
expectation EβM |φM is taken with respect to the fiducial distribution of βM condition on φM.

Proof: Note that (y− FMβM)�R−1M (y− FMβM) = RSSM + (βM − β̂�M)F�MR−1M FM(βM −
β̂M). By Equations (10) and (11), the fiducial distribution of βM condition on φM is

r(βM |φM , y) =
∫ ∞
0

r(βM , σ 2
M |φM , y) dσ 2

M

=
∫ ∞
0

π−
|M|
2

2
n
2 �

(
n−|M|

2

)RSS n−|M|
2

M |F�MR−1M FM| 12 (σ 2
M)−( n2+1)

× exp

{
− (y− FMβM)�R−1M (y− FMβM)

2σ 2
M

}
dσ 2

M

= �(n2 )

π
|M|
2 �

(
n−|M|

2

)RSS n−|M|
2

M |F�MR−1M FM| 12
[
(y− FMβM)�R−1M (y− FMβM)

]− n
2

=
�(n2 )

∣∣∣ RSSM
n−|M| (F

�
MR−1M FM)−1

∣∣∣− 1
2

(n− |M|) |M|2 π
|M|
2 �

(
n−|M|

2

)
×

[
1+ 1

n− |M| (βM − β̂M)� n− |M|
RSSM

F�R−1F(βM − β̂M)

]− n
2
,

so βM conditional on φM follows multivariate t-distribution

tn−|M|
(

β̂M ,
RSSM
n− |M| (F

�
MR−1M FM)−1

)
.
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By Equations (3) and (11),

L(θM | y)r(θM | y) = L(θM | y)r(βM , σ 2
M |φM , y)r(φM | y)

= π−
n+|M|

2 (σ 2
M)−(n+1)

2n�
(
n−|M|

2

)
|RM| 12

RSS
n−|M|

2
M |F�MR−1M FM| 12

× exp

{
− (y− FMβM)�R−1M (y− FMβM)

σ 2
M

}
r(φM | y),

and then the FML of modelM is

Pr(y |M) =
∫∫∫

L(θM | y)r(θM | y) dσ 2 dβM dφM

=
∫∫

π−
n+|M|

2 �(n)

2n�
(
n−|M|

2

)
|RM| 12

RSS
n−|M|

2
M |F�MR−1M FM| 12

×
[
(y− FMβM)�R−1M (y− FMβM)

]−n
r(φM | y) dβM dφM

=
∫∫

�(n)

2nπ
n
2 �(n2 )|RM|

1
2

[
(y− FMβM)�R−1M (y− FMβM)

]− n
2

× r(βM |φM , y)r(φM | y) dβM dφM

∝
∫

EβM |φM

{[
(y− FMβM)�R−1M (y− FMβM)

]− n
2
}
|RM|− 1

2 r(φM | y) dφM

= EφM

{
EβM |φM

{[
(y− FMβM)�R−1M (y− FMβM)

]− n
2
}
|RM|− 1

2

}
,

where the expectation EφM is taken with respect to the quasi-fiducial distribution of φM ,
and the expectation EβM |φM is taken with respect to the conditional fiducial distribution of
βM . �

Based on thismodel uncertaintymeasure (16), a newfiducialmodel selection criterion is pro-
posed for model (2). The optimal model selected fromM should satisfy the largest fiducial
marginal likelihood, i.e.,

M∗ = argmax
M∈M

Pr(y |M).

Because it is hard to obtain a closed form of the FML Pr(y |M), which could be com-
puted using quasi-fiducial samples of θ based on Algorithm 2. Let (φ�M;1, . . . ,φ

�
M;N1

)� be
a quasi-fiducial sample of φM in Algorithm 2, and (β�M;1, . . . ,β

�
M;N2

)� be a conditional fidu-
cial sample from tn−|M|(β̂M , RSSM

n−|M| (F
�
MR−1M;iFM)−1) for given RM;i = R(φM;i) (i = 1, . . . ,T),

respectively. Then we have

P̂r(y |M) = 1
N1N2

N1∑
i=1

N2∑
j=1

{[
(y− FMβM;j)

�R−1M;i(y− FMβM;j)
]− n

2
}
|RM;i|− 1

2 . (17)

We call the aforementioned model selection method as the quasi-fiducial Model Selection
(QFMS for short) and list its detailed steps in Algorithm 4.
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Algorithm 4 (The QFMS on the UK models)
Step 1: According to the Sure Independence Screening (SIS) criterion, we rank the variables
by importance and construct a set of nested candidate modelsM = {M1,M2, . . . ,MK}. Let
k = 1. Step 2: For modelMk ∈M, compute (β̂�Mk

, σ̂ 2
Mk

, φ̂�Mk
)� and generate a quasi-fiducial

sample (φ�Mk;1, . . . ,φ
�
Mk;N1

)� via Algorithm 2. Step 3: For each φMk,i, generate a fiducial sam-

ple (β�Mk;1, . . . ,β
�
Mk;N2

)� from tn−|M|
(
β̂Mk ,

RSSMk
n−|M| (F

�
Mk

R−1Mk;iFMk)
−1

)
. Step 4: Substitute the

quasi-fiducial samples into (17) and calculate the P̂r(y|Mk). k = k+ 1. Step 5: Repeat Step 2
to Step 4 and calculate P̂r(y|Mk+1) until k = K. Step 6: Find out the optimal modelM∗ such
thatM∗ = argmaxM∈MP̂r(y|M).

4. Numerical simulations and case analysis

In this section, we primarily evaluate the numerical performance of the proposed method
through two numerical simulations and a case analysis, and compare it with the well-studied
methods such as Lasso and EN with respect to estimation accuracy.

The quasi-fiducial distribution of φM depends on its prior π(φM), φM ∈ (0, 1)d. In this
study, we choose its prior is φi ∼ β(0.5, 0.5) and φi ∼ β(1, 1) (i = 1, . . . , d ), and two cor-
responding methods are denoted QFMS0.5 and QFMS1, respectively. To study the selection
performance of QFMS, we use the rootmean square error of prediction (RMSEP) tomeasure
prediction accuracy, and it is defined as

RMSEP =

√√√√∑N
i=1

(
y(x(i)

test)− ŷ(x(i)
test)

)2
N

,

whereN is the number of testing samples. Themean of the rootmean square prediction error
(MRMSEP) and the standard deviance of the rootmean square prediction error (sd(RMSEP))
are computed respectively. Furthermore, we need identifications to measure the accuracy of
variable selection for linear regression models, which use the average number of inactive
effect identified rate (IEIR), the average number of active effect identified rate (AEIR) and
the average size of the identified model (MEAN). The accuracy of variable identification is
measured by

AEIR = 1
N

N∑
i=1

|Mi ∩Mo|
|Mo| , IEIR = 1

N

N∑
i=1

|Mi ∩Mc
o|

|Mc
o|

, MEAN = 1
N

N∑
i=1
|Mi|,

whereMo andMc
o are active effect and inactive effect of the true model respectively, andMi

is the set of variables of the optimal model in the ith experiment.
In simulation study, N = 1000 samples are randomly selected as testing data, and we

implement the proposed method with 1500 MCMC steps for each data set, and discard the
first Nburnin = 500.

4.1. A linear regression function

The known function is defined on a 12-dimensional (d = 12) input space [0, 1]12, where the
first 6 variables x1, . . . , x6 have decreasing effects on the computer experiment output results,
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Table 1. The results of the model selection of linear models.

n Method AEIR (%) IEIR (%) MEAN MRMSEP sd( RMSEP)

50 QFMS1 99.65 23.26 7.38 0.1243 0.0254
QFMS0.5 99.30 22.57 7.31 0.1241 0.0252
Lasso 97.40 37.50 8.09 0.1396 0.0276
EN 98.44 37.33 8.15 0.1366 0.0246

80 QFMS1 99.48 38.02 8.25 0.1196 0.0229
QFMS0.5 99.65 40.28 8.40 0.1202 0.0224
Lasso 98.09 51.04 8.95 0.1408 0.0357
EN 98.96 51.39 9.02 0.1355 0.0233

100 QFMS1 98.61 46.18 8.69 0.1221 0.0241
QFMS0.5 98.96 48.96 8.88 0.1227 0.0239
Lasso 99.13 55.90 9.30 0.1385 0.0238
EN 99.65 56.25 9.35 0.1396 0.0243

and the coefficients of the remaining variables x7, . . . , x12 are zero. The mean function is

y(x) = 0.4x1 + 0.3x2 + 0.2x3 + 0.1x4 + 0.05x5 + 0.01x6 + z(x), (18)

where z(x) ∼ N(0, σ 2R), σ 2 = 0.01 and R is the covariance matrix based on the power
exponential correlation coefficients from (2) with φi = 0.5, i = 1, . . . , 12, respectively.

This simulation generates samples with sample sizes n = 50, 80, 100 and dimensions d =
12 using Latin hypercube sampling fromChen et al. (2016).We rank the importance of the 12
input variables by the criterion SIS to construct the 12 nestedUKmodels as a candidatemodel
set. As shown in Table 1, both QFMS1 and QFMS0.5 demonstrate superior performance to
LASSO and EN, with lower values for IEIR, MEAN and MRMSEP, while exhibiting higher
AEIR values.

4.2. A non-linearmodel

Borehole function of Morris et al. (1993)

y(x) = 2πx3(x4 − x6)
{
log

(
x2
x1

) (
1+ 2

x3x7
log(x2/x1x21x8)

+ x3
x5

) }−1
. (19)

The input space is a rectangular interval [0.05, 0.015]× [100, 5000]× [63070, 115600]×
[990, 1110]× [63.1, 116]× [700, 820]× [1120, 1680]× [9855, 12045], and the sampleswere
generated through Latin hypercube sampling with dimension p = 8 and sample size
N = 100. We use the UK model to fit the borehole function and set its mean function as

m(x) = β0 + β1x1 + · · · + β8x8.

The performances of Lasso, EN, QFMS1 and QFMS0.5 are shown in Table 2, where MEAN,
MRMSEP and sd(RMSEP) are calculated by the selected optimal model.

Results in Table 2 show that MRMSEP and sd(RMSEP) of QFMS1 and QFMS0.5 are lower
than that of Lasso and EN, which means that the prediction accuracy and stability of QFMS
are better. QFMS1 and QFMS0.5 perform similarly.

4.3. Case analysis

Wevalidate all methods by an engineering problem called piston slap noise. Piston slap noise,
caused by the secondary motion of pistons within cylinders, affects engine performance and
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Table 2. The results of the model selection of non-linear models.

n Method MEAN MRMSEP sd( RMSEP)

50 QFMS1 7.00 5.0196 1.6701
QFMS0.5 7.00 4.9926 1.7421
Lasso 5.00 6.5298 3.7572
EN 8.00 8.2972 2.4832

80 QFMS1 6.52 2.6178 0.9748
QFMS0.5 6.49 2.6399 1.0660
Lasso 5.32 3.5016 2.8685
EN 7.82 5.7124 2.6871

100 QFMS1 6.49 1.9897 1.0526
QFMS0.5 6.46 1.9724 1.0502
Lasso 5.21 1.9001 1.6537
EN 7.76 4.7061 2.3499

contributes to environmental noise pollution. To minimize the noise, our study analyses six
significant factors: piston-to-cylinder clearance (x1), peak pressure position (x2), skirt length
(x3), skirt profile shape (x4), skirt ovality (x5) andpistonpin offset (x6).Data used in this study
were sourced from Huang et al. (2020), comprising 100 observations with 6 input variables
per sample. Model construction considered all possible linear main effects.

To validate the model’s performances, the 100 samples were divided into 2 parts: 80 sam-
ples were used as the training set for model training and parameter estimations, and the
remaining 20 samples were used as the test set for evaluating the predictive performance. The
RMSEPs of QFMS0.5, QFMS1, Lasso and EN are 0.2711, 0.6224, 1.1817 and 1.2047, respec-
tively, which indicate that prediction accuracy of optimal model selected by QFMS1 is better
than the two penalized methods and QFMS0.5.

5. Conclusion

Fiducial inference is applied to obtain fiducial distributions for different parameters in the
Kriging model. To solve the challenge of constructing the fiducial marginal distribution for
space related parameter, we substitute the Bayesian posterior distribution of spatially related
parameter for the fiducial marginal distribution and present a quasi-fiducial distribution for
Kriging model parameters. Additionally, a model uncertainty measure based on the fidu-
cial marginal likelihood function and its approximation method is proposed, leading to the
development of a newmodel selectionmethod, QFMS. Numerical studies demonstrated that
the QFMS method outperforms Lasso and Elastic-Net in terms of prediction precision and
stability. And in many situations, the identification accuracy of QFMS performs best when
we concentrate on linear models.

There are several model selection issues for further investigation. First, we do not pro-
vide the joint fiducial distribution of Kriging model parameters, and statistical inference
is conducted through the marginal distribution of the parameters instead. Exploring the
joint fiducial distribution of the parameters remains a future research direction. Second, the
explicit expression for the marginal distribution of the spatial parameter φ is not provided. If
this issue can be resolved, we could derive a more precise double expectation expression for
the uncertainty probability measure and further obtain amore accurateMonte Carlo estima-
tion for it. At last, the relationship between model complexity and prediction performance
has always been an important aspect of model selection methods, which deserves further
in-depth exploration.
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