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ABSTRACT
This paper studies the kernel-type distribution estimator based on
asymptotically almost negatively associated (AANA, for short) samples.
The rate of uniformly strong consistency is establishedunder somemild
conditions. As applications, the uniformly strong convergence rates of
kernel-type density estimator and kernel-type hazard rate estimator are
also obtained. SomeMonteCarlo simulations are presented to illustrate
the finite sample performance of the kernel method. Finally, a real data
analysis of Alibaba stock returns data is used to illustrate the usefulness
of the proposed methodology.
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1. Introduction

The distribution estimation is one of the most fundamental research areas in statistical
theory. Let {Xi}i≥1 be real-valued random variables (r.v.’s, for short) having common dis-
tribution function (d.f., for short) F(·) and probability density function (p.d.f., for short) f (·)
with respect to Lebesgue measure. The most common estimate of F(·), based on the sample
X1, . . . ,Xn, is the empirical d.f. Fn(x) as follows

Fn(x) = 1
n

n∑
i=1

I(Xi ≤ x), x ∈ R. (1)

This estimate, however, does not take into consideration the smoothness of F(·) when the
existence of a p.d.f. f (·) is stipulated. Hence, Yamato (1973) introduced the following kernel
distribution estimator F̂n(·):

F̂n(x) = 1
n

n∑
i=1

K
(
x − Xi

hn

)
, x ∈ R, (2)

where K(·) is a known d.f. and hn > 0 is called the bandwidth satisfying hn → 0 as n → ∞.
Based on the assumption that X1, . . . ,Xn are independent and identically distributed

(i.i.d., for short) r.v.’s., the properties of kernel distribution estimator F̂n(x) have been
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well investigated in the literature. For example, Watson and Leadbetter (1964) showed
the limit distribution of the distribution estimator F̂n(x); Yamato (1973) obtained almost
uniform convergence of F̂n(x) to F(x); Winter (1979) provided that F̂n(x) enjoys the Chung-
Smirnov property. In addition, Azzalini (1981) established an asymptotic expression for the
MSE[̂Fn(x)], and obtained the asymptotically optimal smoothing parameter hn in the mean
squared error (MSE, for short) sense, while Swanepoel (1988) proved that the uniform ker-
nel is optimal in the mean integrated squared error (MISE, for short) sense and derived an
expression for the bandwidth hn.

In a number of practical application, however, the hypothesis of independence of sample
X1, . . . ,Xn seems too strong, and the most suitable hypothesis is asymptotic independence.
Therefore, our interest is the distribution function and its application based on dependent
samples. Assuming that X1, . . . ,Xn are dependent r.v.s., there are also some studies on the
properties of estimator F̂n(x) for F(x). Cai and Roussas (1992) and Cai (1993) obtained
almost sure uniform convergence of supx∈R

|̂Fn(x) − F(x)| under α-mixing and ϕ-mixing
condition, respectively; Liu and Yang (2008) investigated the asymptotic distribution of mul-
tivariate kernel distribution estimator based on α-mixing samples. In particular, based on
negatively associated (NA, for short) r.v.’s, Roussas (1995) investigated the asymptotic nor-
mality of

√
n[̂Fn(x) − F(x)]; Jabbari et al. (2009) studied the almost sure convergence of

two-dimensional distribution function; By Lemma 4 of Yang (2003), Yang obtained the
uniformly strong convergence rate of supx∈R

|Fn(x) − F(x)| = O(n−1/2 log1/2 n log log n),
where Fn(x) is defined by (1). Furthermore, based on asymptotically almost negatively asso-
ciated random variables (AANA, for short) samples, Wu and Wang (2019) also obtained
Lemma 4.5 for the uniformly strong convergence rate Fn(x) as supx∈R

|Fn(x) − F(x)| =
O(n−1/2 log1/2 n). Therefore, our works extend the empirical distribution estimator Fn(x) in
Yang (2003) and Wu and Wang (2019) to smooth kernel distribution estimator F̂n(x) based
on AANA samples. Moreover, for more research results for empirical distribution estimator
Fn(x) based on other dependent case, see Lemma 2.3 in Li and Zhou (2020), Lemma 3.4 in
Shen and Wang (2016), and Lemma 4.5 in Wu et al. (2022).

The NA r.v.’s were carefully studied by Joag-Dev and Proschan (1983), which pointed out
a number of well-knownmultivariate distributions possessing the NA property. As an exten-
sion of NA r.v.’s, the AANA was introduced by Chandra and Ghosal (1996a). The concept of
AANA is stated as follows.

Definition 1.1: A sequence {Xn, n ≥ 1} of random variables is called AANA if there exists a
nonnegative sequence q(n) → 0 as n → ∞ such that

Cov[f (Xn), g(Xn+1,Xn+2, . . . ,Xn+k)]

≤ q(n){Var[f (Xn)]Var[g(Xn+1,Xn+2, . . . ,Xn+k)]}1/2

for all n, k ≥ 1 and for all coordinatewise nondecreasing functions f and g whenever the
variances exist.

Specifically, if we take q(n) = 0, then the concept of AANA random variables is equivalent
to that of NA random variables. However, Chandra and Ghosal (1996a) also constructed an
example of AANA sequences to show that somemore sequences of AANA random variables
are not NA. AANA is asymptotically negative correlation, while NA is a negative correla-
tion. On the other hand, some mixing dependent sequences such as α-mixing, ρ-mixing,
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ϕ-mixing satisfy asymptotically uncorrelated in Györfi et al. (1989). Obviously, asymptoti-
cally uncorrelated satisfies asymptotically negative correlation, but the converse is not true.
The asymptotic properties related to AANA samples have been established extensively by
Chandra and Ghosal (1996b), Chen et al. (2015), Shen and Wu (2014), Wang et al. (2003),
Wu and Wang (2019), Yuan and An (2009, 2012) and so on.

In this paper, we mainly study the uniformly strong convergence rate of the kernel-type
distribution estimator F̂n(x) based on AANA samples under somemild conditions. As appli-
cations, we further investigate the uniformly strong convergence rates for density estimator
F̂n(x) and hazard rate estimator r̂n(x). For the details, please see ourmain results in Section 3.
Some simulations are performed to evaluate these kernel-type estimators in Section 4. More-
over, a real data analysis of Breast cancer data is used to illustrate the usefulness of the
proposed methodology in Section 5. Finally, some conclusions are given in Section 6. The
proofs of the main results are given in the Appendix. To make the R programs available to
potential users, we have placed all of the codes and data sets used in this paper on the website
https://github.com/proman1234/kernel-for-AANA.

2. Basic assumptions

In this section, we shall list some basic assumptions before presenting the main results.

Assumptions:

(A1) (i) (i)The sequence {Xi, i ≥ 1} is an identically distributed sequence of real-valued
AANA r.v.’s with d.f. F(x) and p.d.f. f (x), x ∈ R.

(ii) (ii)The p.d.f. f (·) is bounded in R.
(iii) (iii)The second-order derivative F′′(·) exists and it is bounded in R.

(A2) (i) (i)K(x) is a known kernel d.f. with p.d.f. k(x), x ∈ R.
(ii) (ii)

∫
R
uk(u) du = 0 and

∫
R
u2k(u) du < ∞.

(iii) (iii)The first-order derivative k′(·) exists and satisfies
∫

R
|k′(u)| du < ∞.

(A3) Let the bandwidth hn > 0 tend to 0 as n → ∞.

Remark 2.1: We list some comments on the assumptions.

(C1) The Assumptions (A1)(i)–(iii) are used commonly in the kernel distribution estima-
tor for the random sample {Xn, n ≥ 1}. For more kernel distribution estimator, see
Roussas (1995), Ghorai and Susarla (1990), Liu and Yang (2008), etc.

(C2) The Assumptions (A2)(i)–(iii) are the mild conditions for kernel functionK(·), which
is available for some common kernel function such as Normal kernel, Epanechnikov
kernel, Quartic and Triweight kernels, and so on. Formore details, see Roussas (1995),
Cai and Roussas (1999), Li et al. (2010), etc.

(C3) The Assumption (A3) is the condition for bandwidth {hn, n ≥ 1}. It is easily seen that
it is a weak condition to study the properties of kernel-type distribution estimator.

3. Main results

Firstly, we investigate the uniformly strong consistency of the kernel-type estimator as
follows.

https://github.com/proman1234/kernel-for-AANA
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Theorem 3.1: Let Assumptions (A1), (A2)(i)(ii) and (A3) be satisfied. Then,

sup
x∈R

∣∣̂Fn(x) − F(x)
∣∣ = O

(
h2n

) + O
(
n−1/2 log1/2 n

)
, a.s.

Remark 3.1: It is known that F̂n(x) − ÊFn(x) = OP(n−1/2) under some general conditions
(see Li & Rcine, 2007). If we take hn = n−1/4 log1/4 n in Theorem 3.1, then we can easily get
the uniformly strong convergence rate as

sup
x∈R

∣∣̂Fn(x) − F(x)
∣∣ = O(n−1/2 log1/2 n), a.s. (3)

Next, as an application of Theorem 3.1, we consider the estimator of p.d.f. f (x). By taking
the derivative of F̂n(x), we obtain the kernel density estimator F̂n(x) as follows:

F̂n(x) = F̂′
n(x) = 1

nhn

n∑
i=1

k
(
x − Xi

hn

)
, (4)

where k(·) = K ′(·) is a p.d.f. of d.f. K(·), and hn is a bandwidth tending to zero. In
Peligrad (1992), the uniform consistency of kernel density estimator is obtained based on ϕ-
mixing and ρ-mixing random variables. An alternative approach is to use kernel distribution
that avoids the kernel function K(·) is monotonous.

Theorem3.2: Let Assumptions (A1)–(A3) be satisfied. If n−1h−2
n log n → 0, as n → ∞, then,

sup
x∈R

∣∣̂Fn(x) − f (x)
∣∣ = O (hn) + O

(
n−1/2h−1

n log1/2 n
)
, a.s.

Remark 3.2: By taking hn = n−1/4 log1/4 n, we can easily get the uniformly strong conver-
gence rate as

sup
x∈R

∣∣̂Fn(x) − f (x)
∣∣ = O

(
n−1/4 log1/4 n

)
, a.s. (5)

Based on AANA samples, Wu and Wang (2019) also studied the nearest neighbour density
estimator f̃n(x) of f (x), which was introduced by Loftsgarden and Quesenberry (1965) as
follows:

f̃n(x) = kn
2nan(x)

.

Here, kn, n ≥ 1 is a sequence of positive integers such that 1 ≤ kn ≤ n and

an(x) = min{a : there exist at least kn of X1, . . . ,Xn in [x − a, x + a]}.
Wu and Wang (2019) obtained the uniformly strong convergence rate supx∈R |f̃n(x) −
f (x)| = O(n−1/6 log1/6 n) a.s., which is slightly slower than the rate O(n−1/4 log1/4 n) in (5).
Therefore, our result extends the nearest neighbour density estimator f̃n(x) to smooth kernel
density estimator F̂n(x) based on AANA samples.

Combining Theorem 3.1 with Theorem 3.2, we also consider the estimator of the hazard
rate function, which is a basic problem in reliability theorem and biomedical science. Now,
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let us recall the notation of the hazard rate function r(x) and its estimators rn(x) and r̂n(x),
which are defined as follows

r(x) = f (x)
1 − F(x)

, rn(x) = fn(x)
1 − Fn(x)

, r̂n(x) = F̂n(x)
1 − F̂n(x)

, (6)

where Fn(x) and F̂n(x) are the empirical distribution estimator and kernel distribution
estimator of distribution F(x) with 1 − F(x) > 0, respectively;

fn(x) = 1
2nhn

n∑
i=1

I(x − hn < Xi ≤ x + hn) (7)

and F̂n(x) are the histogram density estimator (7) and the kernel density estimator (4) of f (x),
respectively.

Theorem 3.3: Suppose that the conditions of Theorem 3.2 hold. Let x̄ = sup{x ∈ R : F(x) <

1} and the interval [c, d] is any subset of (−∞, x̄). Then,

sup
x∈[c,d]

∣∣r̂n(x) − r(x)
∣∣ = O(hn) + O

(
n−1/2h−1

n log1/2 n
)
, a.s.

Remark 3.3: Similarly to Remark 3.2, we take hn = n−1/4 log1/4 n in Theorem 3.3 and easily
get the uniformly strong convergence rate as

sup
x∈[c,d]

∣∣r̂n(x) − r(x)
∣∣ = O(n−1/4 log1/4 n), a.s. (8)

Based on α-mixing samples, Cai and Roussas (1992) obtained the uniformly strong consis-
tency rate as supx∈[c,d] |r̂n(x) − r(x)| = O(n−1/4(log log n)1/4), which is only slightly better
than the one obtained in (8). Therefore, Theorem 3.3 extends the result of Cai and Rous-
sas (1992) from α-mixing setting to AANA setting. In addition, we give some simulations to
illustrate the estimators of F̂n(x),Fn(x), F̂n(x), fn(x), r̂n(x) and rn(x) based onAANAsamples,
which show a good fit of the theoretical results.

4. Simulation

In this section, we do some simulation experiments to evaluate the finite sample performance
of the kernel-type estimators in this paper. Let {αn, n ≥ 1} be a positive constant sequence
with αn → 0 as n → ∞. The simulation data are generated from the follow scheme as

Xn = (1 + α2
n)

−1/2(Yn + αnYn+1), n ≥ 1, (9)

where Yn
i.i.d.∼ N(0, 1). Chandra and Ghosal (1996a) proved {Xn, n ≥ 1} to be a sequence

of AANA random variables with q(n) = O(αn). In addition, by the additivity of normal
distribution, the distribution of {Xn}n≥1 is identically as N(0, 1), i.e. the density is f (x) =
(2π)−1/2 exp(−x2/2), x ∈ R. To compute the kernel-type estimators F̂n(x), F̂n(x) and r̂n(x),
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we chose the Gaussian kernel distribution function

K(x) =
∫ x

−∞
1√
2π

exp
(

−u2

2

)
du, x ∈ R.

Consequently, the Gaussian kernel density function is taken by

k(x) = K′(x) = 1√
2π

exp
(

−1
2
x2

)
, x ∈ R.

Moreover, we set bandwidth hn = [n−1/3, n−1/4 log1/4 n, n−1/6] in our simulations. It is easily
seen that the bandwidth hn satisfies Assumption (A3). For the Cross-Validation method of
selecting hn, one can refer to Li and Rcine (2007) and the references therein.

First, for x ∈ [−3, 3], we do some simulations for the estimators Fn(x) and F̂n(x) in (1)
and (2), respectively. The results are shown in Figure 1 with n = [50, 100, 150, 200] for one
experiment. From Figure 1, it can be seen that: (i) the fitted curves of estimator Fn(x) are not
as smooth as that of estimator F̂n(x); (ii) the fitted curves of Fn(x) and F̂n(x) will approach
the true curve of F(x) as sample n increases; (iii) the different bandwidth hn affects the fitted
curves of F̂n(x), in particular for small sample n. It will be seen more clearly in Figure 2.

Next, we consider the kernel density estimator F̂n(x) defined by (4) and histogram den-
sity estimator fn(x) defined by (7), x ∈ [−3, 3]. The results are depicted in Figure 2 for one
experiment. From Figure 2, we have similar conclusions as that in Figure 1 for distribution
estimations. In addition, it can be seen that the fitted curves of the kernel density estimator
F̂n(x) with hn = n−1/4 log1/4 n perform better than other fitted curves.

Finally, we also compare the performance of kernel hazard estimators r̂n and histogram
hazard estimator rn(x) by simulation. In order to make the denominator 1 − Fn(x) in rn(x)
away from zero in simulation, we take x ∈ [−3, 3] to calculate hazard rate estimators rn(x)
and r̂n(x). Therefore, by n = [50, 100, 200, 400] and αn = n−2 in data generatemodel (9), the
curves of estimators rn(x) and r̂n(x) for r(x) are presented in Figure 3 for one experiment.

Similar to Figures 2 and 3, by Figure 3, it can be seen that as sample size n increases, the
kernel hazard rate estimator r̂n(x) performs better than estimator rn(x), specifically r̂n(x)
with hn = n−1/4 log1/4 n. Thus, the kernel-type estimators F̂n(x), F̂n(x) and r̂n(x) have more
advantageous than the histogram estimators Fn(x), fn(x) and rn(x).

Now, we do some simulations for the global error measures of asymptotic results such as
Theorems 3.1–3.3. Denote the Mean Integrated Squared Error (MISE) of F̂n(x) in (2) and
Fn(x) in (1) with distribution function F(x), respectively, as

MISE(̂Fn) = E
∫ b

a

[̂
Fn(x) − F(x)

]2
dx, [a, b] ⊂ R, (10)

MISE(Fn) = E
∫ b

a

[
Fn(x) − F(x)

]2
dx, [a, b] ⊂ R. (11)

Compared to MISE, the maximal deviation is another useful measure to compare the
performances of F̂n(x) in (2) and Fn(x) in (1), which are respectively defined by

Dn(̂Fn) = sup
x∈[a,b]

|̂Fn(x) − F(x)|, [a, b] ⊂ R, (12)

Dn(Fn) = sup
x∈[a,b]

|Fn(x) − F(x)|, [a, b] ⊂ R. (13)
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Figure 1. Comparison between F̂n(x) and Fn(x) with n = [50, 100, 150, 200] and αn = n−2. (a) n = 50.
(b) n = 100. (c) n = 150. (d) n = 200.

Similarly, the MISE and the maximal deviation for density estimators F̂n(x) and fn(x) and
hazard rate estimators r̂n(x) and rn(x) are defined as

Dn(̂Fn) = sup
x∈[a,b]

|̂Fn(x) − f (x)|, Dn(fn) = sup
x∈[a,b]

|fn(x) − f (x)|,

Dn(r̂n) = sup
x∈[c,d]

|r̂n(x) − r(x)|, Dn(rn) = sup
x∈[c,d]

|rn(x) − r(x)|,

MISE(̂Fn) = E
∫ b

a

[̂
Fn(x) − f (x)

]2
dx, MISE(fn) = E

∫ b

a

[
fn(x) − f (x)

]2
dx,

MISE(r̂n) = E
∫ d

c

[
r̂n(x) − r(x)

]2
dx, MISE(rn) = E

∫ d

c

[
rn(x) − r(x)

]2
dx.

According to the above definitions, we compute the above measures with bandwidth hn =
n−1/4 log1/4 n, sample sizes n = [100, 200, 300, 400] and coefficients αn = [0, n−1, n−2] in
model (9). For the maximal deviations and mean integrated square errors of distribution
estimators and density estimators, we take [a, b] = [−3, 3] and [c, d] = [−3, 1].
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Figure 2. Comparison between F̂n(x) and fn(x)with n = [50, 100, 150, 200] andαn = n−2. (a) n = 50. (b)
n = 100. (c) n = 150. (d) n = 200.

Then, we can calculate the means of Dn(̂Fn), Dn(̂Fn), Dn(r̂n), MISE(̂Fn), MISE(̂Fn),
MISE(r̂n), by running over 1000 replications, and denote them as Dn(̂Fn), Dn(̂Fn), Dn(r̂n),
MISE(̂Fn), MISE(̂Fn), MISE(r̂n), respectively. Comparing to the kernel-type estimators
F̂n(x), F̂n(x) and r̂n(x), we also calculate the forms

Dn(Fn)
Dn(̂Fn)

,
Dn(fn)
Dn(̂Fn)

,
Dn(rn)
Dn(r̂n)

,
MISE(Fn)
MISE(̂Fn)

,
MISE(fn)
MISE(̂Fn)

,
MISE(rn)
MISE(r̂n)

.

All the results are listed in Tables 1 and 2.
Obviously, from Tables 1 and 2, we can see that the values of Dn(̂Fn), Dn(̂Fn), Dn(r̂n),

MISE(̂Fn), MISE(̂Fn) and MISE(r̂n) decrease as sample size n increases. Meanwhile, the
values of Dn(fn)/Dn(̂Fn), Dn(rn)/Dn(r̂n), MISE(fn)/MISE(̂Fn) and MISE(rn)/MISE(r̂n) are
bigger than 1. Only a few values of MISE(Fn)/MISE(̂Fn) are smaller than 1, but they are very
close to 1. Thus, it is concluded that the kernel-type estimators have more advantages than
the histogram estimators.
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Figure 3. Comparison between r̂n(x) and rn(x)with n = [50, 100, 200, 400] andαn = n−2. (a) n = 50. (b)
n = 100. (c) n = 150. (d) n = 200.

5. Real data analysis

The volatility is one of the characteristics of stock returns, and this feature leads to an irregular
distribution. Thus, when analysing stock returns, it is worth considering the use ofmore flex-
ible non-parametric estimationmethods. In this section, we apply the proposed procedure to
the Alibaba stock prices data sets from Jan. 3, 2023 to Dec. 31, 2024, which contain informa-
tion of 501 trading days. The data can be obtained by ‘getSymbols’ from ‘quantmod’ package
in R. Stock return plays a key role in several areas of finance such as asset pricing, portfolio
allocation and evaluation of investment manager performance. It can be calculated by

Rt = Pt − Pt−1

Pt−1
, t = 1, 2, . . . , 501, (14)

where Pt is the closing price at day t and P0 = P1 �= 0. The daily returns on the prices of
Alibaba stock are shown in Figure 4.
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Table 1. Maximal deviations of distribution, density and hazard rate estimators.

distribution estimator density estimator hazard rate estimator

αn n Dn (̂Fn)
Dn(Fn)

Dn (̂Fn)
Dn (̂Fn)

Dn(fn)

Dn (̂Fn)
Dn(r̂n)

Dn(rn)

Dn(r̂n)

0 100 0.0335 1.7484 0.0424 2.0714 0.0545 6.8004
200 0.0258 1.5934 0.0346 2.0252 0.0436 5.8751
300 0.0231 1.5111 0.0297 2.0590 0.0405 5.2693
400 0.0200 1.4783 0.0273 2.0605 0.0368 5.2123

1/n 100 0.0338 1.7603 0.0423 2.0925 0.0555 6.6576
200 0.0262 1.6003 0.0347 2.0485 0.0454 5.9166
300 0.0215 1.5472 0.0300 2.0579 0.0397 5.4643
400 0.0194 1.4969 0.0268 2.0714 0.0366 5.3824

1/n2 100 0.0344 1.7348 0.0422 2.1098 0.0586 6.5805
200 0.0267 1.5872 0.0346 2.0531 0.0469 5.7562
300 0.0222 1.5112 0.0301 2.0375 0.0409 5.6283
400 0.0200 1.4964 0.0271 2.0516 0.0383 4.9862

Table 2. MISE of distribution, density and hazard rate estimators.

distribution estimator density estimator hazard rate estimator

αn n MISE(̂Fn)
MISE(Fn)

MISE(̂Fn)
MISE(̂Fn)

MISE(fn)

MISE(̂Fn)
MISE(r̂)

MISE(rn)

MISE(r̂)

0 100 0.0167 1.1226 0.0036 1.5310 0.0437 1.7866
200 0.0093 1.0405 0.0022 1.5001 0.0267 1.4647
300 0.0063 0.9872 0.0017 1.4753 0.0195 1.3834
400 0.0049 0.9520 0.0014 1.4607 0.0161 1.3327

1/n 100 0.0174 1.1474 0.0036 1.5531 0.0410 1.9880
200 0.0096 1.0259 0.0023 1.4704 0.0263 1.4724
300 0.0066 0.9761 0.0017 1.4424 0.0201 1.3353
400 0.0049 0.9687 0.0013 1.4714 0.0160 1.3352

1/n2 100 0.0216 1.1949 0.0044 1.5354 0.0420 1.9290
200 0.0092 1.0386 0.0022 1.4860 0.0263 1.5297
300 0.0063 0.9888 0.0017 1.4892 0.0201 1.3679
400 0.0048 0.9574 0.0013 1.4698 0.0160 1.3000

From Figure 4, it can be seen that the time series of return {Rt , 1 ≤ t ≤ 501} is stationary.
So we will apply the kernel-type estimator and non-smooth estimator to fit the distribu-
tion of this data. Similar to Li et al. (2023), the picture of sample autocorrelation functions
(ACF) with samples R1,R2, . . . ,R501 is presented in Figure 5. It can be seen that the sequence
{R1,R2, . . . ,R501} is asymptotically uncorrelated. Thus, we assume it to be AANA in this real
data analysis.

Next, we consider distribution estimators with data {Rt , 1 ≤ t ≤ 501}. The kernel dis-
tribution estimator F̂n(x) with bandwidth hn = n−1/4 log1/4 n and empirical distribution
estimator Fn(x), respectively, are shown in the Figure 6 (left), where the solid black line is
a normal distribution function with mean R̄ = ∑501

t=1 Rt/501 = 0.0001264598 and variance
s2(R) = ∑501

t=1(Rt − R̄)2/500 = 0.0006178045, denoted by F(x). It is pointed out that this
normal distribution function F(x) is not the true distribution of data {Rt , 1 ≤ t ≤ 501}.

Although these two distribution estimators F̂n(x) and Fn(x) are in good agreement, it is
more important to make sure that the same is true for the density functions, because the
closeness of two distribution function estimators does not imply the closeness of the corre-
sponding density functions. The Figure 6 (right) displays that the density function obtained
by using the two density estimator F̂n(·) and fn(·). It is seen from this figure that the shapes of
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Figure 4. Times series of returns of Alibaba stock from Jan. 3, 2023 to Dec. 31, 2024.

the density estimators F̂n(·) and fn(·) are significantly different with the normal density func-
tion f (x) of F(x). We can observe that the distribution of Alibaba stock returns is leptokurtic,
which is consistent with the findings fromMikael (2001). Therefore, the non-parametric ker-
nel estimation method not only has more advantages than ordinary normal distribution in
capturing themarket risk characteristics, but also can better reflect the characteristics of peak
of the stock returns distribution. At the same time, the conclusion is more credible.

6. Conclusion

In this paper, we have considered the kernel-type estimators for the distribution function,
density function and hazard rate function based on the AANA samples, and obtained the
uniformly strong convergence rates for these estimators. In practice, we can test whether
a time series is an AANA by computing the sample autocorrelation function, since AANA
is asymptotically negative correlation. Our simulation studies indicate that the kernel-type
estimators have good performance compared to the histogram estimators. In particular, we
advise to use kernel estimator r̂n(x) to estimate hazard function rather than rn(x). In the real
data analysis, it will be seen that the non-parametric kernel estimation method is particu-
larly suitable for estimating the distribution function of stock returns. It is known that AANA
sequence is asymptotically negative correlation, while the mixing sequences are asymptoti-
cally uncorrelated. Many works of estimators F̂n(x), F̂n(x) and r̂n(x) with mixing conditions
can be found in Györfi et al. (1989), and it is interesting for research to study themwith other
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Figure 5. Sample autocorrelation functions (ACF) plots for Alibaba returns data series.

Figure 6. Distribution function (left) and density function (right) for Alibaba stock returns, where the blue
lines base on histogram estimators, and the black lines are normal distribution function curves. (a) n = 50.
(b) n = 100.
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dependent samples. In this paper, we did not obtain the optimal uniformly convergence rates
with AANA samples, compared to the independent samples. Thus, we will pay attention to
the study of optimal uniformly convergence rate, asymptotic distribution and the applications
in future work.
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Appendix. Proofs of Theorems 3.1, 3.2 and 3.3

Lemma A.1 (Wu and Wang (2019), Lemma 4.5.): Let {Xn, n ≥ 1} be a sequence of AANA random
variables with continuous distribution function F(x), x ∈ R. Then

sup
x∈R

|Fn(x) − F(x)| = O
(
n−1/2 log1/2 n

)
a.s.,

where Fn(x) is defined by (1).

A.1 Proof of Theorem 3.1

According to the definition of F̂n(x) in (2) and Assumption (A2)(i), we have

F̂n(x) =
∫ +∞

−∞
K

(
x − y
hn

)
dFn(y)

= K
(
x − y
hn

)
Fn(y)

∣∣∣∣+∞

−∞
−

∫ +∞

−∞
Fn(y) dK

(
x − y
hn

)

=
∫ +∞

−∞
Fn(x − hnu)k(u) du,

where Fn(x) is defined by (1). Furthermore, it follows that

F̂n(x) − F(x) =
∫ +∞

−∞
[Fn(x − hnu) − F(x − hnu)] k(u) du

+
∫ +∞

−∞
[F(x − hnu) − F(x)]k(u) du. (A1)

By Lemma A.1 and Assumption (A2)(i), it is easy to see that

sup
x

∣∣∣∣
∫ +∞

−∞
[Fn(x − hnu) − F(x − hnu)]k(u) du

∣∣∣∣ = O(n−1/2 log1/2 n) a.s. (A2)

By Taylor’s expansion to F(x), we have

F(x − hnu) − F(x) = −F′(x)hnu + F′′(ξ)

2
h2nu

2, (A3)

where ξ lies between x and x − hnu. Then, combining this withAssumptions (A1)(ii)-(iii) and (A2)(ii),
we obtain∫ +∞

−∞
[F(x − hnu) − F(x)]k(u) du = −hnF′(x)

∫ ∞

−∞
uk(u) du + h2nF′′(ξ)

2

∫ ∞

−∞
u2k(u) du

= O
(
h2n

)
.

This implies

sup
x

∣∣∣∣
∫ +∞

−∞
[F(x − hnu) − F(x)] k(u) du

∣∣∣∣ = O
(
h2n

)
. (A4)

Combining (A1)–(A4), we obtain

sup
x

∣∣̂Fn(x) − F(x)
∣∣ = O

(
n−1/2 log1/2 n

) + O
(
h2n

)
a.s. (A5)

So, we complete the proof of Theorem 3.1.

https://doi.org/10.1007/s10114-012-0033-3
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A.2 Proof of Theorem 3.2

Applying the integrating by parts and change of variable, we obtain

F̂n(x) − f (x) = 1
nhn

n∑
i=1

k
(
x − Xi

hn

)
− f (x)

= 1
hn

∫ +∞

−∞
k
(
x − t
hn

)
dFn(t) − 1

hn

∫ +∞

−∞
k
(
x − t
hn

)
dF(t)

+ 1
hn

∫ +∞

−∞
k
(
x − t
hn

)
dF(t) − f (x)

∫ +∞

−∞
k (t) dt

=
∫ +∞

−∞
k (u) dFn(x − hnu) −

∫ +∞

−∞
k (u) dF(x − hnu)

+
∫ +∞

−∞
k (u) dF(x − hnu) − f (x)

∫ +∞

−∞
k (u) du

= k(u)Fn(x − hnu)|∞−∞ − k(u)F(x − hnu)|∞−∞

−
∫ +∞

−∞
[Fn(x − hnu) − F(x − hnu)] dk (u)

+
∫ +∞

−∞
k (u) [f (x − hnu) − f (x)] du. (A6)

By
∫ ∞
−∞ u2k(u) du < ∞ in Assumption (A2)(ii), we have k(u) → 0 as |u| → ∞. Thus, it has

k(u)Fn(x − hnu)|∞−∞ = 0 and k(u)F(x − hnu)|∞−∞ = 0.
Next, by Theorem 3.1 and

∫ ∞
−∞ |k′(u)| du < ∞ in Assumption (A2)(iii), we have

sup
x∈R

∣∣∣∣
∫ +∞

−∞
Fn(x − hnt) − F(x − hnt) dk (t)

∣∣∣∣
≤ sup

(x−hnu)∈R

|Fn(x − hnu) − F(x − hnu)|
∫ +∞

−∞
∣∣k′ (u)

∣∣ du
= O(h2n) + O

(
n−1/2h−1

n log1/2 n
)

a.s. (A7)

By
∫ ∞
−∞ uk(u) du = 0 in Assumption (A2)(ii), it has

∫ ∞
−∞ |u|k(u) du < ∞. Combining this and the

boundness of f ′(x) in Assumption (A1)(iii), we obtain that∫ +∞

−∞
k (u)

∣∣f (x − hnu) − f (x)
∣∣ du ≤ hn|f ′(η)|

∫ +∞

−∞
k (u) |u| du = O(hn), (A8)

where η lies between x and x − hnu.
Therefore, by (A6)–(A8), it has

sup
x∈R

∣∣̂Fn(x) − f (x)
∣∣ = O(hn) + O(n−1/2h−1

n log1/2 n) a.s.

Hence, we complete the proof of Theorem 3.2.

A.3 Proof of Theorem 3.3

By elementary calculus, we have

r̂n(x) − r(x) = [1 − F(x)][̂Fn(x) − f (x)] + f (x)[̂Fn(x) − F(x)]
[1 − F(x)][1 − F̂n(x)]

. (A9)

By Theorem 3.1, we know that supx∈[c,d] |̂Fn(x) − F(x)| → 0 a.s. Thus, (1 − F(x))(1 − F̂n(x)) is
bounded away from zero uniformly in x ∈ [c, d]. Then, utilizing Theorems 3.1 and 3.2 andAssumption
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(A1)(ii), we get
sup

x∈[c,d]
|r̂n(x) − r(x)| = O(hn) + O(n−1/2h−1

n log1/2 n) a.s.

Thus, we complete the proof of Theorem 3.3.
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