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ABSTRACT
This paper proposes a penalized method for high-dimensional variable selection and subgroup
identification in the Tobit model. Based on Olsen’s [(1978). Note on the uniqueness of the maxi-
mum likelihood estimator for the Tobit model. Econometrica: Journal of the Econometric Society,
46(5), 1211–1215. https://doi.org/10.2307/1911445] convex reparameterizationof the Tobit neg-
ative log-likelihood, we develop an efficient algorithm for minimizing the objective function by
combining the alternating direction method of multipliers (ADMM) and generalised coordinate
descent (GCD). We also establish the oracle properties of our proposed estimator under some
mild regularity conditions. Furthermore, extensive simulations and an empirical data study are
conducted to demonstrate the performance of the proposed approach.
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1. Introduction

Subgroup analysis has broad applicability in precision medicine, economics and sociology as there is an increasing
need to distinguish homogeneous subgroups of individuals, detect the subgroup structure and model the relation-
ships between the response variable and predictors for individuals belonging to different subgroups. Thus, vast
statistical methods for subgroup analysis have been developed, such as mixture models (Everitt, 2013) and regu-
larization methods (Ma & Huang, 2017). Mixture model methods assume that the data come from a mixture of
subgroups and require the specification of an underlying distribution. Shen and He (2015) proposed a structured
logistic-normal mixture model to identify subgroups. However, they often require the number of subgroups to be
specified to group the parameterized models, which can often be difficult to implement in practice. In contrast,
Ma andHuang (2017) developed a pairwise fusion approach using concave penalty functions, such as the smoothly
clipped absolute deviation (SCAD, J. Fan&Li, 2001) penalty and theminimax concave penalty (MCP, Zhang, 2010),
that automatically identifies subgroup structures and estimates subgroup-specific effects. Ma et al. (2019) consid-
ered a heterogeneous treatment effects model.Wang et al. (2019) proposed a general framework of spatial subgroup
analysis method for spatial data with repeated measures.

In numerous regression problems, the dependent variables can only be observed within a restricted range. For
instance, when studying the influencing factors of different family expenditures in a group, some familiesmay spend
zero on items like medical insurance. Similarly, when studying individual or collective income, negative income
generated by debt cannot be included in the income calculation. These scenarios involve left-censored data, which
exist commonly in economics. Therefore, it encourages us to develop models specially tailored to address such
situations. Tobin (1958) developed the Tobit model to study the relationship between the annual expenditure of
durable goods and household income. Due to the large number of scenarios of left-censored data in economics
and social sciences, the Tobit model remained popular and it has been thoroughly studied and extended to deal
with other types of censored data (Amemiya, 1984). Regarding subgroup analysis with censored data, Dagne (2016)
proposed amethod that simultaneously addresses left-censoring and unobserved heterogeneity within longitudinal
data. Additionally, Yan et al. (2021) developed a censored linear regression model with heterogeneous treatment
effects.

The advent of advanced data collection techniques has led to an increase in the prevalence of high-dimensional
data in the aforementioned fields. When dealing with high-dimensional problems, J. Fan and Lv (2010) pro-
vided a comprehensive overview of variable selection approaches, which incorporate methods discussed by J. Fan
and Li (2001). In the context of high-dimensional censored models, Müller and van de Geer (2016) and Zhou
and Liu (2016) respectively introduced lasso penalty and adaptive lasso penalty to the least absolute deviation
(LAD) estimator (Powell, 1984) for variable selection in high-dimensional censored models. Johnson (2009) and
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Soret et al. (2018) proposed lasso penalties for Buckley-James estimators in right and left censored data. Moreover,
Bradic et al. (2011) provided a non-concave penalized approach in Cox proportional hazards model with non-
polynomial-dimensionality. Alhamzawi (2016) and Alhamzawi (2020) developed the Bayesian method of penalty
censored regression. Recently, Jacobson and Zou (2023) extended the Tobit model to high-dimensional regression.
However, none of these methods focus on subgroup analysis in high-dimensional censored data.

This paper focuses on subgroup identification and variable selection for a high-dimensional Tobit model. To the
best of our knowledge, there have been no discussions on subgroup analysis for high-dimensional Tobit models
in the existing literature. We adopt a penalized approach to identify the subgroup structures and select covariates
simultaneously. The subgroup structure is determined by penalizing pairwise differences between subject-specific
effects while significant covariates are chosen based on a penalty on coefficients. To ensure the sparsity and unbi-
asedness of the proposed estimators, we consider two commonly used concave penalties, SCAD (J. Fan & Li, 2001)
and MCP (Zhang, 2010). Due to the non-convex of the negative log-likelihood in the Tobit model (Tobin, 1958),
optimization becomes challenging for high-dimensional settings. To address this issue, we employ a convex
reparameterization of negative log-likelihood, building upon the idea proposed by Olsen (1978). This reparam-
eterization enables us to solve the problem using convex optimization approaches. The computational algorithm
we proposed combines the alternating direction method of multipliers (ADMM) algorithm (Boyd et al., 2011) and
generalized coordinate descent (GCD) algorithm (Jacobson & Zou, 2023; Yang & Zou, 2013) using two concave
penalties, such as SCAD or MCP. Furthermore, we conduct a theoretical analysis of the proposed estimators and
establish their oracle properties under mild conditions.

The remainder of this paper is organized as follows. Section 2 introduces the main problem and outlines the
proposed method. In Section 3, we propose an algorithm for identifying the subgroup structures and performing
variable selection.We state technical assumptions and establish the theoretical properties of our proposed approach
in Section 4. Section 5 provides extensive simulation studies to illustrate the empirical performance of the proposed
method, while Section 6 presents its application to empirical data. A summary and prospects for future research
are presented in Section 7 and all technical proofs are given in Appendix.

2. Model andmethod

2.1. Model setting

Suppose that xi = (xi1, . . . , xip)� is a p-dimensional vector of covariates for the ith subject. yi ≥ c is the response for
a restricted range, where c is a known constant. Without loss of generality, we assume that c = 0 in the following.
The Tobit model assumes that the observed data y satisfies y = max(y∗, c), where y∗ is a latent variable. Under the
homogeneous case, the classical linear model takes the form

y∗i = μ+ x�i β + εi, i = 1, . . . , n, (1)

where μ is the unknown intercept, β = (β1, . . . ,βp)
� is the vector of coefficients for the covariates xi, and εi are

assumed to be independent and identically distributed with normal distribution N(0, σ 2).
If individuals are from different groups with a unique interceptμi, the homogeneity assumption in themodel (1)

is invalid. To model the subject-specific effects, we consider the subject-specific linear model

y∗i = μi + x�i β + εi, i = 1, . . . , n. (2)

We assume (y∗1, . . . , y∗n) arise from K different groups with K ≥ 1 unknown and the subjects from the same groups
have the same intercept. In other words, we have μi = πk for all i ∈ Gk, where πk is the common value of intercept
μi in subgroup Gk and G = (G1, . . . ,GK) is a mutually partition of {1, . . . , n}. In practice, the number of subgroups
K is unknown and is smaller than the sample size n.

Define di = I(yi ≥ 0), where I(·) is an indicator function. Then the observed data (y1, . . . , yn) satisfy the
following Tobit model

yi = diy∗i =
{
μi + xiβ + εi, if y∗i ≥ 0,
0, if y∗i < 0, i = 1, . . . , n, (3)

with subgroup structure

μi =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
π1, if i ∈ G1,
π2, if i ∈ G2,
...

...
πK , if i ∈ GK .

(4)
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Let �(·) denote the standard normal cumulative distribution function (CDF). Then

P(y∗i ≤ 0) = P(μi + x�i β < 0) = �

(
−μi + x�i β

σ

)
,

and the Tobit likelihood is given by

Ln(μ,β , σ 2) =
n∏

i=1

[
1√
2πσ

exp
{
− 1
2σ 2 (yi − μi − x�i β)2

}]di [
�

(
−μi − x�i β

σ

)]1−di
,

whereμ = (μ1, . . . ,μn)
�. Therefore, after omitting an inconsequential constant, the log-likelihood function of the

Tobit model is

log Ln(μ,β , σ 2) =
n∑

i=1

(
di
[
−1
2
(yi − μi − x�i β)2/σ 2 − log(σ )

]

+ (1− di) log

[
�

(
−μi + x�i β

σ

)])
.

It is apparent that the function log Ln(μ,β , σ 2) is non-concave with respect to the parameters (μ,β , σ 2). By adopt-
ing the reparameterization suggested in the works of Olsen (1978) and Jacobson and Zou (2023) with δ = β/σ ,
αi = μi/σ and γ 2 = σ−2, we achieve a transformation that leads to a concave function with respect to parameters
(α, δ, γ ),

log Ln(α, δ, γ ) =
n∑

i=1

{
di
[
log(γ )− 1

2
(γ yi − αi − x�i δ)2

]
+ (1− di) log

(
�(−αi − x�i δ)

)}
,

where α = (α1, . . . ,αn)
�.

2.2. Method

There are usually some redundant covariates in high-dimensional scenarios, and regularization is the most com-
monly usedmethod to identify the sparsity of regression coefficient vectors (Bondell&Reich, 2008; J. Fan&Lv, 2010;
Y. Fan & Tang, 2013). The subgroup structure (4) can be transformed as the fusion sparse structure, αi − αj =
(μi − μj)/σ = 0 (i, j ∈ Gk, k = 1, . . . ,K). In order to estimate the parameters α, δ, and γ , and to select proper
covariates through the sparsity assumption of δ, we propose a new method that combines ideas of penalized
Tobit regression (Jacobson & Zou, 2023) and the subgroup analysis by concave pairwise fusion penalization (Ma
& Huang, 2017; Ma et al., 2019), which can be expressed as minimizing the following loss function

Q(α, δ, γ ; λ1, λ2) = −1
n
log Ln(α, δ, γ )+

p∑
i=1

Pλ1(|δi|)+
∑
i<j

Pλ2(|αi − αj|), (5)

where Pλ1(·) and Pλ2(·) are penalty functions, λ1, λ2 ≥ 0 are tuning parameters that control the strengths of reg-
ularization of |δi| and |αi − αj|, respectively. Note that the sparsity of δ is achieved through the first penalty term,
while the homogeneity detection is achieved by the second penalty term. Additionally, when λ1 = 0 the problem
reduces to the subgroup analysis in censored regression; when λ2 = 0 the problem reduces to the penalized Tobit
regression.

It is important to note that lasso estimators may fail to achieve consistent model selection unless a stringent
‘irrepresentable condition’ (Zhao & Yu, 2006; Zou, 2006). Particularly, the L1 penalty tends to overshrink non-zero
difference of |αi − αj|, which can result in an inflated number of subgroups. To address this limitation, we con-
sider two common concave penalty functions for the purposes of identifying the subgroup structure and selecting
variables, namely the smoothly clipped absolute deviation (SCAD, J. Fan & Li, 2001) and the minimax concave
penalty (MCP, Zhang, 2010). These penalties provide alternative approaches to handle the challenges associated
with variable selection and subgroup detection.
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The SCAD is defined as follows

Pλ(t) = λ

∫ t

0
I(x ≤ λ)+ (aλ− x)+

(a− 1)λ
I(x > λ)dx, a > 2,

and the MCP is

Pλ(t) =
∫ t

0

(aλ− x)+
a

dx, a > 1,

where a is a parameter that controls the concavity of the penalty function.

3. Computational algorithm

In this section, we propose an algorithm utilizing the alternating direction method of multipliers (ADMM) (Boyd
et al., 2011) in conjunctionwith generalized coordinate descent (GCD) (Jacobson&Zou, 2023; Yang&Zou, 2013) to
address theminimization problem (5). Since the penalty function is not separable with respect toαi, it is challenging
to directly minimize the objective function (5). We introduce a new set of parameters ηij = αi − αj, and then the
minimizing problem can be written as the following constraint optimization problem

S(α, δ, η, γ ; λ1, λ2) = �n(α, δ, γ )+
p∑

i=1
Pλ1(|δi|)+

∑
i<j

Pλ2(|ηij|),

subject to αi − αj − ηij = 0,

where �n(α, δ, γ ) = − 1
n log Ln(α, δ, γ ) is the negative log-likelihood function which we call it Tobit loss for short

and η = {ηij, i < j}�. Applying the augmented Lagrangianmethod, the estimates of the parameters can be obtained
by minimizing

L(α, δ, η,ϕ, γ ; λ1, λ2, ρ) = S(α, δ, η, γ ; λ1, λ2)+
∑
i<j

ϕij(αi − αj − ηij)+ ρ

2

∑
i<j

(αi − αj − ηij)
2, (6)

where ϕ = {ϕij, i < j}� are Lagrange multipliers, and ρ is the penalty parameter.
To obtain the minimum in (6), we propose to use the following iterative algorithm based on the ADMM. Let t

denote the iteration step. We update the estimates of (α, δ, γ ), η, and ϕ iteratively at the (t + 1)th iteration step as
follows

(α(t+1), δ(t+1), γ (t+1)) = arg min
δ,α,γ

L(α, δ, γ , η(t),ϕ(t)), (7)

η(t+1) = argmin
η

L(α(t+1), δ(t+1), γ (t+1), η,ϕ(t)), (8)

ϕ(t+1) = ϕ(t) + ρ(�α(t+1) − η(t+1)), (9)

where � = {(ei − ej), i < j}�.
It is worth noting that, given (η(t),ϕ(t)), the objective function in the first minimization problem (7) can be

simplified as

L(α, δ, γ , η,ϕ) = 1
n

n∑
i=1

�i(αi, δ, γ )+
p∑

i=1
Pλ1(|δi|)+

∑
i<j

ϕij(αi − αj − ηij)

+ ρ

2

∑
i<j

(αi − αj − ηij)
2 + C, (10)

where �i(αi, δ, γ ) = 1
2di(γ yi − αi − x�i δ)2 − (1− di) log�(−x�i δ − αi)), and C is a constant independent with

(α, δ, γ ).
Due to the complexity of the function (10) with respect to (α, δ, γ ), we apply the generalized coordinate descent

(GCD) method to solve the problem. By employing the GCDmethod, we can iteratively update each variable while
holding the others fixed.
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Let α′, δ′ and γ ′ be the current values for α, δ and γ , respectively. For the sake of simplicity in notation, let v(−j)
denote the vector v with the jth element removed in the subsequent context. In order to get the estimate of αi, we
begin by expressing the Tobit loss �n with respect to αi

�n(αi | α′(−i), δ′, γ ′) =
1
n

{
1
2
di(γ yi − αi − x�i δ′)2 − (1− di) log�(−x�i δ′ − αi)

}
.

We observe that after dropping the negligible constants, the Tobit loss �n associated with αi solely depends on
the data collected from subject i. In line with Theorem 1 presented in Jacobson and Zou (2023), the quadratic
majorization function for �n(αi | α′, δ′, γ ′) takes the following form:

Qα(αi | α′(−i), δ′, γ ′) = �n(α
′
i | δ′, γ ′)+ �̇n(α

′
i | δ′, γ ′)(αi − α′i)+

1
2
(αi − α′i)

2,

where �̇n(α
′
i | δ′, γ ′) represents the derivative of functionwith respect toαi. Following theMMprinciple, the update

of αi can be obtained by minimizing the expressionQα(αi | α′(−i), δ′, γ ′)+ ρ
2
∑

k<j{(ek − ej)�α − ηkj + ρ−1ϕkj}2,
and ej is an n× 1 vector with the jth element being 1 and the remaining elements being 0. Therefore, for fixed
α(t,k), δ(t,k), and γ (t,k) at the kth step, the update of α(t,k+1) is as follows

α(t,k+1) = (I + nρ���)−1(nρ��η(t) − n��ϕ(t) + a(t,k)), (11)

where I is the identity matrix, and a(t,k) = α(t,k) − �̇n(α
(t,k)) with �̇n(α

(t,k)) = (�̇n(α
(t,k)
1 ), . . . , �̇n(α

(t,k)
n ))�.

Now we consider coordinate-wise updates of δj, j = 1, . . . , p. LetMj = 1
n
∑n

i=1 x2ij. Similarly to αi, we also have
the quadratic majorization function of �n(δj | α′, δ′, γ ′) with respect to δj with form

Qδ(δj | α′, δ′−j, γ ′) = �n(δ
′
j | α′, δ′(−j), γ ′)+ �̇n(δ

′
j | α′, δ′(−j), γ ′)(δj − δ′j)+

Mj

2
(δj − δ′j)

2,

where �̇n(δ
′
j | α′, δ′(−j), γ ′) is the derivative of �n(δj | α′, δ′(−j), γ ′)with respect to δj. Here, the Tobit loss with respect

to δj can be expressed as

�n(δj | α′, δ′(−j), γ ′) =
1
n

n∑
i=1

1
2
di(γ yi − α′i − x�i,(−j)δ

′
(−j) − xijδj)2

− (1− di) log�(−xi,(−j))�δ′(−j) − α′i − xijδj)).

We can update δj by minimizing Qδ(δj | α′, δ′−j, γ ′)+ Pλ1(δj) through MM principle. For j = 1, . . . , p, let υ
(t,k)
j =

δ
(t,k)
j − 1

Mj
�′n(δ

(t,k)
j | α(t,k+1), δ(t,k), γ (t,k)). Hence, for SCAD penalty with a1 > maxj{M−1j } + 1, the update of δj at

the (k+ 1)th step is

δ
(t,k+1)
j =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ST

(
υ

(t,k)
j ,

λ1

Mj

)
, if |υ(t,k)

j | ≤ λ1 + λ1/Mj,

ST(υ
(t,k)
j , a1λ1/((a1 − 1)Mj))

1− ((a1 − 1)Mj)−1
, if λ1 + λ1/Mj < |υ(t,k)

j | ≤ a1λ1,

υ
(t,k)
j , if |υ(t,k)

j | > a1λ1,

(12)

where ST(t, λ) = sign(t)(|t| − λ)+ is the soft-thresholding rule, and (x)+ = max{x, 0}. And when a1 >

maxj{M−1j } for the MCP penalty, the updated value is

δ
(t,k+1)
j =

⎧⎪⎨⎪⎩
ST(υ

(t,k)
j , λ1/Mj)

1− (a1Mj)−1
, if |υ(t,k)

j | ≤ a1λ1,

υ
(t,k)
j , if |υ(t,k)

j | > a1λ1.
(13)

Lastly, for given α(t,k+1) and δ(t,k+1), we minimize �n(γ | α(t,k+1), δ(t,k+1)) to update γ ,

γ (t,k+1)

=
∑n

i=1 diyi(α
(t,k+1)
i + x�i δ(t,k+1))+

√(∑n
i=1 diyi(α

(t,k+1)
i + x�i δ(t,k+1))

)2 + 4
(∑n

i=1 diy2i
)∑n

i=1 di

2
∑n

i=1 diy2i
. (14)

Once the convergence is achieved, we denote the final iteration of the GCD as (α(t+1), δ(t+1), γ (t+1)).
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As for the second minimization function (8), by eliminating insignificant constants that have no effect on the
minimization process, the optimization function simplifies to the following form

ηij = argmin
ηij

ρ

2
(ηij − ζij)

2 + Pλ2(|ηij|), (15)

with respect to ηij, where ζij = αi − αj + ρ−1ϕij. It’s worth noting that (15) is convex with respect to each ηij when
a2 > ρ−1 for MCP or a2 > ρ−1 + 1 for SCAD. Hence, the closed-form solution for the MCP penalty at the (t + 1)
iteration is

η
(t+1)
ij =

⎧⎪⎨⎪⎩
ST(ζ

(t+1)
ij , λ2/ρ)

1− (a2ρ)−1
, if |ζ (t+1)

ij | ≤ a2λ2,

ζ
(t+1)
ij , if |ζ (t+1)

ij | > a2λ2.
(16)

Then for the SCAD penalty, it is

η
(t+1)
ij =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ST(ζ

(t+1)
ij , λ2/ρ), if |ζ t+1

ij | ≤ λ2 + λ2/ρ,
ST(ζ

(t+1)
ij , a2λ2/((a2 − 1)ρ))

1− ((a2 − 1)ρ)−1
, if λ2 + λ2/ρ < |ζ (t+1)

ij | ≤ a2λ2,

ζ
(t+1)
ij , if |ζij| > a2λ2.

(17)

We provide the complete algorithm in Algorithm (1), referred to as the ADMM-GCD algorithm for convenience.

Algorithm 1 An ADMM-GCD algorithm for high-dimensional censored regression with heterogeneous effects

Require: Initialize δ(0),α(0),γ (0),η(0)← α
(0)
i − α

(0)
j ,ϕ(0)← 0;

Given λ1, λ2 > 0 and εa, εb > 0;
for t = 0, 1, 2, . . . do

α(t,0)← α(t), δ(t,0)← δ(t);
for k = 0, 1, 2, . . . do

Compute α(t,k+1) using (11);
for j = 1 to p do

Compute δ
(t,k+1)
j using (12) or (13);

end for
Compute γ (t,k+1) using (14);
if ‖(α(t,k+1) − α(t,k))�, (δ(t,k+1) − δ(t,k))�, (γ (t,k+1) − γ (t,k))‖22 ≤ εa then

Stop and denote α(t+1) = α(t,k+1), δ(t+1) = (δ
(t,k+1)
1 , . . . , δ(t,k+1)

p )�, γ (t+1) = γ (t,k+1);
end if

end for
Compute η(t+1) using (16) or (17);
Compute ϕ(t+1) using (9);
if ‖�α(t+1) − η(t+1)‖22 < εb then

Stop and get μ̂ = α(t+1)/γ (t+1), β̂ = δ(t+1)/γ (t+1), σ̂ = 1/γ (t+1);
end if

end for

Remark: In the algorithm, there are two iterative steps. In the nested GCD iteration, the iterative convergence
criterion is defined as follows∥∥∥∥(α(t,k+1) − α(t,k)

)�
,
(
δ(t,k+1) − δ(t,k)

)�
,
(
γ (t,k+1) − γ (t,k)

)∥∥∥∥2
2
≤ εa.

On the other hand, for ADMM, we employ the following criterion

‖r(t+1)‖2 = ‖�α(t+1) − η(t+1)‖22 < εb.

It is worth mentioning that in our simulation studies, we set εa = 10−4 and εb = 10−5, respectively.
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The following Proposition 3.1 presents the convergence properties of the proposed algorithm.

Proposition 3.1: Given a1 > max{1/Mj} and a2 > 1/ρ for MCP or a1 > max{1/Mj} + 1 and a2 > 1/ρ + 1 for
SCAD, any accumulation point (δ(t+1),α(t+1), γ (t+1), η(t+1)) generated by Algorithm 1 is a coordinate-wise mini-
mum of L(δ,α, γ , η,ϕ(t)). In addition, the primal residual r(t+1) = �α(t+1) − η(t+1) and the dual residual s(t+1) =
ρ��(η(t+1) − η(t)) of the ADMMsatisfy that limt→∞ ‖r(t)‖22 = 0 and limt→∞ ‖s(t)‖22 = 0 for bothMCP and SCAD
penalties.

4. Theoretical properties

In this section, we study the theoretical properties of the proposed estimators. We first introduceMG , a subspace
of Rn, defined as

MG = {α ∈ Rn : αi = αj, for any i, j ∈ Gk, 1 ≤ k ≤ K}.
For each α ∈MG , it can be also written as α = Zτ , where Z = {zik} is the n× K indicator matrix defined by
zik = 1 for i ∈ Gk and zik = 0 otherwise, and τ is a K × 1 vector of parameters. Let |Gk| denotes the number of
elements in Gk, we have T = Z�Z = diag(|G1|, . . . , |GK |) by matrix calculation. Define |Gmin| = min1≤k≤K |Gk|
and |Gmax| = max1≤k≤K |Gk|.

First, we assume that the true values of the parameters for δ, α and γ are δ∗, α∗ and γ ∗, respectively. Let τ ∗ =
(τ ∗k , k = 1, . . . ,K), where τ ∗k is the underlying common intercept for groupGk.We letA = {j : δj = 0} ⊆ {1, . . . , p}
denote the true support set of δ and defineA′ = A ∪ {p+ 1, . . . , p+ K + 1},A1 = A \ {p+ K + 1} and s = |A|.
Under the sparsity assumption, s� p.

To consider the true variables, we set δ = (δ1
�, δ0�)� and define MB, where δ1 are the true variables with

{δj = 0} and δ0 are the zero variables. Then we define a subspace of Rp as

MB = {δ ∈ Rp : δi = δi for i ∈ A and δi = 0 for i ∈ Ac}.

Additionally, we let � =: (α�, δ�, γ )� and � =: (τ�, δ1�, γ )� for notational convenience.
Since there are obvious differences between censored and uncensored observations in the Tobit likelihood, we

use a more convenient expression to differentiate them clearly. When we define n1 as the number of observations
for which yi > 0 and n0 = n− n1, we can re-block our observations as

X =
[
X0
X1

]
and y =

[
y0
y1

]
,

where X0 is the n0 × (p+ 1) matrix of predictors corresponding to the observations for which yi ≤ 0 while X1
is the n1 × (p+ 1) matrix of predictors corresponding to the observations for which yi > 0. Similarly, y0 and y1
denote the responses greater than and not greater than 0, respectively. Then by the definition above we get the same
form

α =
[
α0
α1

]
= Zτ =

[
Z0τ

Z1τ

]
.

4.1. Technical conditions

In this subsection, we will introduce several mild conditions and discuss their relevance in detail.

(C1): Assume ‖Xj‖2 =
√
n for 1 ≤ j ≤ p, ‖X‖∞ ≤ C1s, ‖δ∗‖∞ ≤ C2

√
s, ‖α∗‖∞ ≤ C3

√
n, and |γ ∗| ≤ C0 for some

constant 0 ≤ C0,C1,C2,C3 ≤ ∞.
(C2): The penalty function Pλ(t) is symmetric of t, and it is nondecreasing and concave for t ∈ [0,∞). It is a

constant on t ≥ aλ for the function ρ(t) = Pλ(t)/λ with 0 ≤ a ≤ ∞ and ρ(0) = 0. Moreover, ρ ′(t) exists
and is continuous except for a finite number of t and ρ′(0+) = 1.

(C3): The error vectors εi, i = 1, . . . , n are i.i.d. normal distributed with mean zero and variance σ ∗2 such that
P(|εi| > t) ≤ 2c exp(− 1

2c
−2t2)/t, where c is a constant.

Conditions (C2) and (C3) are widely adopted in high-dimensional settings. The penalties, including MCP and
SCAD mentioned in the article, satisfy (C2).
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When the true group memberships G1, . . . ,GK and true support setA are known, the oracle estimators for α, δ
and γ are defined as

�̂or = (̂αor, δ̂or, γ̂ or) = arg max
α∈MG ,δ∈MB ,γ∈R

log Ln(α, δ, γ ).

After removing the redundant variables, we can write X̃ = (Z,XA) and δ̃ = (τ�, δ1�) for ease of calculation. Then,
the oracle estimators for τ , δ1 and γ are given by

�̂or = (̂τ or, δ̂or1 , γ̂
or) = (̃δ

or, γ̂ or)

= arg max
δ1∈RK+s,γ∈R

log Ln(δ1, γ )

= arg max
δ1∈RK+s,γ∈R

n∑
i=1

di
[
log(γ )− 1

2
(γ yi − x̃i�δ̃1)

2
]
+ (1− di) log�

(
(−x̃i�δ̃1)

)
. (18)

The problem (18) can be reduced to the traditional Tobit model. To obtain the estimator using the maximum
likelihood method, it is necessary to calculate the matrix of second partials. We define g(s) = φ(s)/�(s) and
h(s) = g(s)(s+ g(s)). The matrix can be expressed as follows

∇2 log Ln(�) = −
[
X̃�
−y�

] [
D(̃δ1) 0
0 I

] [
X̃ −y]− [

0 0
0 n1γ−2

]
= −

[
X̃�0 D(̃δ1)X̃0 + X̃�1 X̃1 −X̃�0 D(̃δ1)y0 − X̃�1 y1
−y�0 D(̃δ1)X̃0 − y�1 X̃1 y�0 D(̃δ1)y0 + y�1 y1 − n1γ−2

]
, (19)

whereD(̃δ1) is a n0 × n0 diagonal matrix with [D(̃δ1)]ii = hi = h(−̃x�i δ̃).
Olsen (1978) found that the matrix in (19) is negative semidefinite. Theorem 1 in Amemiya (1973) established

the asymptotic result that this matrix becomes non-zero with probability one. This ensures the invertibility of the
above gradient matrix. Moreover, we introduce an additional condition to support Theorem 4.2.

(C4): The tuning parameter λ1 � C1s ·max{ s3/2n0 ,
1√
n0
,
√

log n
n1 } and λ2 � |Gmin|−1 ·max{ s3/2n0 ,

1√
n0
,
√

log n
n1 }.

4.2. Theoretical results

Theorem 4.1: Suppose that y∗i = μ∗i + x�i β∗ + εi where εi
iid∼ N(0, σ ∗2) and define yi = y∗i · I(y∗i > 0) for i =

1, . . . , n. Let �̂or denote the oracle solution to the Tobit model when the true group memberships and true support
set of β are known. Suppose conditions (C1)–(C3) hold, and then �̂or corresponds to the unique maximum of the
likelihood function and is a consistent estimator of the true parameter values �∗ such that

√
n(�̂or −�∗)→ N(0,	), (20)

where	 = limn→∞[− 1
n∇2 log Ln(�)|�=�∗]−1. Moreover, we denote λmax as the maximum eigenvalue of the matrix

	. If λmax = O(1) is satisfied, we have that with probability at least 1− p1 = 1− C
√

log n
n · exp{− n

2 log n },∥∥�̂or −�∗
∥∥∞ ≤ φn, (21)

where φn = 1/
√
log n and C is a constant.

For K ≥ 2, let

bn = min
i∈Gk,j∈Gk′ ,k=k′

|α∗i − α∗j | = min
k=k′
|τ ∗i − τ ∗j |

be the minimal difference of the common values between the two groups.

Theorem 4.2: Suppose the conditions in Theorem 4.1 hold and K ≥ 2. If the minimum signal strength of δ∗ satisfies
|δA|min > (a+ 1)λ1 and bn > aλ2. When λ1, λ2 � φn, where a is a given constant in (C2), then there exists a local
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minimum �̂(λ1, λ2) = (̂α�, δ̂�, γ )� of the objective function Q(α, δ, γ ) given in (5) satisfying

P
(
(̂α�, δ̂�, γ )� = (̂αor)�, (̂δor)�, (γ̂ or)�

)
→ 1,

that is,

P
(
�̂(λ1, λ2) = �̂or)→ 1.

The proofs of these theorems are given in the Appendix.

5. Simulation studies

In this section, we conduct extensive simulation studies to investigate the numerical performance of the proposed
approaches. We generate data from the censored heterogeneous linear model:

y∗i = μi + x�i β + εi, i = 1, . . . , n,

where xij, j = 1, . . . , p are generated from independent normal distributionN(1, 1), and the error terms εi are from
independent normal distributionN(0, 0.52). We set yi = max{0, y∗i }with censoring rate q. The true coefficients are
set as β = (5, 1,−2, 0.5, 0.1, 0, . . . , 0)�, which is a p-dimensional vector with p−5 zero elements. To investigate the
effect of the magnitude of difference between subgroup-specific effects, we consider two cases for the subgroup
structure:

Case 1: K = 2, P(μi = −2) = P(μi = 2) = 1
2 ;

Case 2: K = 3, P(μi = −2) = P(μi = 2) = P(μi = 0.5) = 1
3 .

We evaluate the performance of the estimators obtained using the proposed method using three different penal-
ties (SCAD, MCP and Lasso), and compare them to the penalized Tobit approach (Tobit SCAD, Jacobson & Zou,
2023), which assumes a homogeneous intercept effect μ. Additionally, we present the results of Oracle estimators
(Tobit Oracle) as well. For each simulation, we generate 100 datasets with sample size of n = 100, for every com-
bination of q ∈ {20%, 40%} and p = 10, 50, 200. Specifically, we set ρ = 2 and set a1 = a2 = 3.7 for the SCAD
penalty and a1 = a2 = 3 for the MCP penalty. Subsequently, we conduct the simulations by selecting the optimal
tuning parameters via minimizing the modified BIC (Wang et al., 2007):

BIC(λ1, λ2) = −2 log Ln(̂α, δ̂, γ̂ )+ Cn log(n)(K̂ + s+ 1). (22)

Wang et al. (2009) used Cn = log(log(d)) in the simulation to apply the divergence of the predictor with sample
size in high-dimensional scenarios. In this article, we letCn = c log(log(d)), where d = n+ p+ 1 and c is a positive
constant that we set to 1.5.

We evaluate the methods based on three aspects, accuracy of the coefficient estimates, performance of the
variable selection and identifying the subgroup structures. To measure the estimation accuracy of parameters
μ̂, β̂ , and σ̂ , we use the square error of the mean squared errors. Let μ∗, β∗ and σ ∗ represent the true param-
eters. The square roots of the mean squared errors for μ̂, β̂ and σ̂ are defined by err(μ̂) = ‖μ̂− μ∗‖2/

√
n,

err(β̂) = ‖β̂ − β∗‖2 and err(̂σ ) = |̂σ − σ ∗|, respectively.
In order to assess the variable selection of these methods, we report the number of true variables not included

(NT) and the number of error variables included (NE). Moreover, to evaluate the performance of the subgroup
analysis, we present the estimate of the number of groups (K̂), the rate of false estimation of the number of groups
(FK%) and the Rand Index (RI, Rand, 1971), which is defined by

RI = TP+ TN
TP+ FP+ FN+ TN

,

where true positive (TP) indicates that two observations from the same truth group are allocated to the same group,
true negative (TN) means two observations from different groups are allocated to different groups, false positive
(FP) denotes two observations from different groups but allocated to the same group, and false negative (FN) rep-
resents two observations from the same group are allocated to different groups. A high Rand Index indicates a
substantial proportion which of individuals being assigned to the correct subgroups.

Tables 1 and 2 present the average square root of the mean squared error (RSME) of the estimates of the five
methods. The cases considered in the tables involve varying values of p and censoring rates. It is evident from the
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Table 1. The sample means and standard deviations of the index to be measured when K = 2.

Censoring p Method Err(μ̂) Err(β̂) Err(̂σ ) K̂

20% 10 MCP 0.557(0.020) 0.211(0.012) 0.213(0.013) 2(0.000)
SCAD 0.513(0.069) 0.204(0.019) 0.261(0.022) 2(0.000)
Lasso 2.314(0.271) 0.306(0.121) 0.330(0.054) 1(0.000)

Tobit SCAD 2.516(0.337) 0.825(0.240) 1.760(0.098) –
Tobit Oracle 0.105(0.007) 0.119(0.013) 0.097(0.005) 2(0.000)

50 MCP 0.640(0.079) 0.303(0.034) 0.305(0.050) 2(0.000)
SCAD 0.627(0.102) 0.314(0.021) 0.311(0.051) 2(0.000)
Lasso 2.575(0.382) 0.379(0.103) 0.279(0.042) 1(0.000)

Tobit SCAD 2.863(0.415) 0.978(0.241) 1.802(0.117) –
Tobit Oracle 0.112(0.006) 0.105(0.012) 0.089(0.005) 2(0.000)

200 MCP 0.692(0.053) 0.357(0.015) 0.316(0.025) 2(0.000)
SCAD 0.671(0.041) 0.345(0.019) 0.305(0.031) 2(0.000)
Lasso 2.659(0.316) 0.501(0.129) 0.344(0.078) 1(0.000)

Tobit SCAD 2.744(0.292) 0.941(0.312) 1.862(0.109) –
Tobit Oracle 0.121(0.008) 0.103(0.0109) 0.101(0.005) 2(0.000)

40% 10 MCP 0.621(0.061) 0.351(0.041) 0.261(0.014) 2(0.000)
SCAD 0.553(0.079) 0.259(0.032) 0.264(0.022) 2(0.000)
Lasso 2.448(0.343) 0.298(0.063) 0.455(0.048) 1(0.000)

Tobit SCAD 2.481(0.384) 0.780(0.231) 1.926(0.111) –
Tobit Oracle 0.135(0.011) 0.134(0.014) 0.189(0.025) 2(0.000)

50 MCP 0.774(0.130) 0.565(0.066) 0.425(0.088) 2(0.000)
SCAD 0.685(0.114) 0.578(0.051) 0.414(0.091) 2(0.000)
Lasso 2.329(0.371) 0.557(0.079) 1.325(0.131) 1(0.000)

Tobit SCAD 2.587(0.495) 1.016(0.218) 1.577(0.079) –
Tobit Oracle 0.131(0.014) 0.157(0.012) 0.166(0.027) 2(0.000)

200 MCP 0.773(0.122) 0.585(0.057) 0.549(0.023) 2(0.000)
SCAD 0.809(0.118) 0.584(0.052) 0.561(0.031) 2(0.000)
Lasso 2.515(0.298) 0.804(0.075) 1.011(0.238) 1(0.000)

Tobit SCAD 2.604(0.531) 0.726(0.209) 1.864(0.122) –
Tobit Oracle 0.120(0.048) 0.144(0.008) 0.172(0.052) 2(0.000)

Table 2. The sample means and standard deviations of the index to be measured when K = 3.

Censoring p Method Err(μ̂) Err(β̂) Err(̂σ ) K̂

20% 10 MCP 0.309(0.083) 0.228(0.072) 0.273(0.012) 3(0.000)
SCAD 0.245(0.044) 0.147(0.013) 0.271(0.008) 3(0.000)
Lasso 1.946(1.128) 0.349(0.033) 0.310(0.031) 1(0.000)

Tobit SCAD 1.934(0.264) 0.567(0.178) 1.462(0.094) –
Tobit Oracle 0.064(0.004) 0.112(0.002) 0.127(0.009) 3(0.000)

50 MCP 0.617(0.062) 0.485(0.028) 0.325(0.004) 3(0.000)
SCAD 0.681(0.046) 0.501(0.031) 0.321(0.004) 3(0.000)
Lasso 2.135(0.931) 0.769(0.218) 0.496(0.074) 1(0.000)

Tobit SCAD 2.172(0.416) 0.481(0.032) 1.647(1.015) –
Tobit Oracle 0.076(0.008) 0.117(0.003) 0.118(0.013) 3(0.000)

200 MCP 0.753(0.067) 0.501(0.042) 0.379(0.013) 3(0.000)
SCAD 0.693(0.059) 0.537(0.044) 0.388(0.024) 3(0.000)
Lasso 2.004(0.657) 0.741(0.118) 0.428(0.037) 1(0.000)

Tobit SCAD 2.021(0.269) 0.555(0.037) 1.757(0.085) –
Tobit Oracle 0.073(0.054) 0.118(0.007) 0.103(0.017) 3(0.000)

40% 10 MCP 0.347(0.043) 0.346(0.172) 0.285(0.018) 2.98(0.141)
SCAD 0.267(0.069) 0.288(0.021) 0.280(0.032) 3(0.000)
Lasso 2.155(0.450) 0.355(0.094) 0.766(0.103) 1(0.000)

Tobit Lasso 1.994(0.294) 0.642(0.191) 1.459(0.099) –
Tobit Oracle 0.052(0.008) 0.110(0.003) 0.058(0.025) 3(0.000)

50 MCP 0.692(0.071) 0.574(0.054) 0.474(0.035) 2.97(0.171)
SCAD 0.645(0.080) 0.568(0.109) 0.513(0.021) 2.97(0.223)
Lasso 2.064(0.233) 0.611(0.058) 0.542(0.037) 1(0.000)

Tobit SCAD 2.213(0.206) 0.956(0.452) 1.535(0.079) –
Tobit Oracle 0.051(0.048) 0.119(0.010) 0.069(0.031) 3(0.000)

200 MCP 0.712(0.141) 0.674(0.128) 0.469(0.031) 2.99(0.100)
SCAD 0.723(0.119) 0.666(0.072) 0.483(0.021) 2.97(0.171)
Lasso 2.369(1.004) 0.810(0.142) 0.558(0.062) 1(0.000)

Tobit SCAD 2.287(0.407) 0.722(0.195) 1.179(0.121) –
Tobit Oracle 0.056(0.018) 0.122(0.004) 0.081(0.054) 3(0.000)

tables that the proposedmethods, namelyMCP and SCAD, consistently yield smaller RMSE values compared to the
Lasso andTobit SCADmethods across all simulations.Moreover, themethod utilizing the lasso penalty consistently
underestimates the number of groups. Consequently, the substantial deviation of the estimator can be attributed
to the loss of heterogeneous intercept information. Similarly, the Tobit SCAD method when utilized without the
subgroup recognition function, shows comparable results.

In Tables 3 and 4, we report the results for variable selection and identification of subgroups. The NT and NE
values indicate that ourmethod exhibits comparable performance to othermethods in identifying relevant variables
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Table 3. The sample means and standard deviations of the index to be measured when K = 2.

Censoring p Method NT NE RI FK%

20% 10 MCP 0.51(0.045) 1.79(0.121) 0.943(0.006) 0
SCAD 0.45(0.028) 1.63(0.112) 0.960(0.002) 0
Lasso 0.42(0.026) 2.14(0.287) 0.328(0.004) 100

Tobit SCAD 0.72(0.041) 1.82(0.176) – –
Tobit Oracle 0.00(0.000) 0.00(0.000) 1.000(0.000) 0

50 MCP 0.65(0.031) 5.22(0.316) 0.904(0.009) 0
SCAD 0.64(0.019) 5.34(0.286) 0.918(0.019) 0
Lasso 0.81(0.033) 7.48(0.461) 0.325(0.003) 100

Tobit SCAD 0.87(0.027) 5.99(0.204) – –
Tobit Oracle 0.00(0.000) 0.00(0.000) 1.000(0.000) 0

200 MCP 0.62(0.026) 6.55(0.197) 0.885(0.025) 0
SCAD 0.68(0.041) 6.82(0.231) 0.872(0.008) 0
Lasso 0.73(0.045) 11.91(0.722) 0.334(0.006) 100

Tobit SCAD 0.72(0.037) 7.22(0.504) – –
Tobit Oracle 0.00(0.000) 0.00(0.000) 1.000(0.000) 0

40% 10 MCP 0.63(0.041) 1.94(0.209) 0.912(0.011) 0
SCAD 0.51(0.039) 1.83(0.232) 0.928(0.009) 0
Lasso 0.75(0.032) 1.88(0.176) 0.343(0.011) 100

Tobit SCAD 0.77(0.047) 1.28(0.244) – –
Tobit Oracle 0.00(0.000) 0.00(0.000) 1.000(0.000) 0

50 MCP 0.68(0.035) 5.11(0.359) 0.877(0.029) 0
SCAD 0.62(0.027) 4.89(0.315) 0.871(0.033) 0
Lasso 0.61(0.041) 8.28(0.541) 0.332(0.008) 100

Tobit SCAD 0.71(0.033) 5.81(0.391) – –
Tobit Oracle 0.00(0.000) 0.00(0.000) 1.000(0.000) 0

200 MCP 0.66(0.051) 7.01(0.522) 0.893(0.021) 0
SCAD 0.68(0.045) 6.97(0.421) 0.895(0.017) 0
Lasso 0.89(0.065) 10.13(0.762) 0.328(0.013) 100

Tobit SCAD 0.81(0.059) 7.87(0.606) – –
Tobit Oracle 0.00(0.000) 0.00(0.000) 1.000(0.000) 0

Table 4. The sample means and standard deviations of the index to be measured when K = 3.

Censoring p Method NT NE RI FK%

20% 10 MCP 0.41(0.029) 2.19(0.188) 0.895(0.017) 0
SCAD 0.39(0.031) 2.13(0.168) 0.918(0.029) 0
Lasso 0.54(0.027) 2.96(0.192) 0.343(0.006) 100

Tobit SCAD 0.36(0.028) 2.52(0.095) – –
Tobit Oracle 0.00(0.000) 0.00(0.000) 1.000(0.000) 0

50 MCP 0.62(0.032) 5.39(0.212) 0.864(0.021) 0
SCAD 0.66(0.031) 5.32(0.312) 0.848(0.027) 0
Lasso 0.88(0.042) 7.13(0.402) 0.328(0.003) 100

Tobit SCAD 0.71(0.035) 5.78(0.321) – –
Tobit Oracle 0.00(0.000) 0.00(0.000) 1.000(0.000) 0

200 MCP 0.67(0.033) 7.14(0.363) 0.839(0.028) 0
SCAD 0.74(0.028) 7.21(0.353) 0.841(0.033) 0
Lasso 0.93(0.048) 10.82(0.599) 0.331(0.005) 100

Tobit SCAD 0.78(0.039) 8.06(0.448) – –
Tobit Oracle 0.00(0.000) 0.00(0.000) 1.000(0.000) 0

40% 10 MCP 0.51(0.023) 2.16(0.166) 0.884(0.019) 2
SCAD 0.43(0.021) 2.21(0.138) 0.892(0.012) 0
Lasso 0.49(0.026) 2.30(0.243) 0.317(0.005) 100

Tobit SCAD 0.64(0.039) 1.91(0.174) – –
Tobit Oracle 0.00(0.000) 0.00(0.000) 1.000(0.000) 0

50 MCP 0.73(0.024) 6.52(0.354) 0.834(0.019) 3
SCAD 0.71(0.042) 6.45(0.476) 0.841(0.021) 5
Lasso 0.81(0.052) 9.47(0.780) 0.319(0.007) 100

Tobit SCAD 0.80(0.035) 6.68(0.467) – –
Tobit Oracle 0.00(0.000) 0.00(0.000) 1.000(0.000) 0

200 MCP 0.75(0.029) 7.18(0.323) 0.818(0.021) 1
SCAD 0.69(0.034) 7.21(0.261) 0.825(0.019) 3
Lasso 0.77(0.051) 12.34(0.652) 0.321(0.005) 100

Tobit SCAD 0.71(0.048) 8.07(0.316) – –
Tobit Oracle 0.00(0.000) 0.00(0.000) 1.000(0.000) 0

while outperforming them in efficiently screening out irrelevant variables. The proposed approaches also achieve
higher RI and lower FK values, further establishing their superiority over the alternative methods. Despite facing
increased challenges inmodel recovery due to higher censoring rates and larger parameter dimensions, ourmethod
still maintains a remarkably low prediction error rate for the number of subgroups. Incorrect estimations only occur
when the deletion ratio reaches 40%, underscoring the robustness of our approach even under such demanding
conditions.
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6. An empirical application to the HIV drug resistance data

Antiretroviral therapy (ART) is a commonmedical treatment for human immunodeficiency virus (HIV). However,
the high mutation rate of HIV leads to drug-resistant mutations (DRMs) in HIV-infected patients receiving ART.
In response to this challenge, physicians regularly monitor HIV viral load. When the patient’s treatment regimen
fails to suppress the virus, genotypic testing is conducted to check for DRMs, and subsequently, they can update the
patient’s drug regimen appropriately.

To identify DRMs and quantify the degree of resistance they provide to different ART treatments, the proposed
approach is applied tomodel the relationship betweenHIV viral load andmutations in the virus’s genome. The data
used in this section are from the OPTIONS trial by the AIDS Clinical Trials Group (Gandhi et al., 2020), which
can be downloaded from the Stanford HIV Drug Resistance database (Shafer, 2006). Specifically, the OPTIONS
trial encompassed 412 participants afflicted with HIV-infected, who were undergoing protease inhibitor (PI)-based
treatment and grappling with virological failure. Each individual was administered an individualized ART regimen
on the basis of their drug resistance and treatment history. Individuals exhibiting moderate drug resistance were
randomly allocated to either include nucleoside reverse transcriptase inhibitors (NRTIs) into their optimized treat-
ment regimens or to exclude NRTIs from these regimens. Individuals with high drug resistance were all provided
with optimized regimens that encompassed NRTIs.

Our dataset includes n = 407 participants who were subjected to a comprehensive 12-week follow-up assess-
ment. Within this dataset, there are a multitude of predictors p = 601, including 99 protease (PR) and 240 reverse
transcriptase (RT) gene mutation indicators. Due to the technical limitations of the assays employed for its mea-
surement, it cannot be measured when the HIV viral load is less than the threshold (50 copies/ml), the response
variable is left censored. As proposed by Soret et al. (2018), we use log10-HIV viral load as our response due to its
prevalent conformity to a normal distribution. In this trial, 35.6% of individuals have no detectable viral load, which
implies a left censoring ratio of 35.6% for the data sample. We compare our proposed methods (SCAD and MCP)
and Tobit SCAD (Jacobson & Zou, 2023) for modelling HIV viral load 12 weeks after drug regimen assignment as
a function of several variables, including HIV genotypic mutations, current drug regimen, baseline viral load, and
observation week, etc.

First, to evaluate the performance of model selection, we apply Tobit SCAD and the proposed methods (SCAD
andMCP) for fitting the entire data respectively. The constant values a1, a2, ρ are set as in Section 5. Consequently,
sparse models containing covariates M184V, the baseline viral load and RAL are consistently selected across all
three approaches. Among them, M184V is an indicator of mutations in the reverse transcriptase (RT) gene, and
RAL refers to whether the participant was taking raltegravir. The Stanford University HIV Resistance Database
lists M184V as a major NRTIs resistance mutation (Jacobson & Zou, 2023; Shafer, 2006). Moreover, the absence of
additional NRTIs being chosen as important variables aligns with the results in Gandhi et al. (2020). This congru-
ence highlights the practical performance of the proposed approaches in model selection. As a result, the specific
estimated coefficients are comprehensively shown in Table 5.

The key difference between the proposed methods and the Tobit SCAD lies in the capacity of the proposed
methods to identify the subgroup structures within the intercepts. As depicted in Figure 1, we present the estimated
density function of yi − x�i β̂

TS, where β̂
TS is the coefficient vector estimate for Tobit SCADmodel (Jacobson&Zou,

2023). It is not difficult to see the distribution of yi − x�i β̂
TS is multimodal. Consequently, it appears more appro-

priate to employ a model with heterogeneous intercepts to fit the dataset. Subsequently, in Figure 2, we present the
density functions estimates of yi − x�i β̂

PS for two subgroups characterized by different intercepts, where β̂
PS is the

coefficient vector estimate for proposed SCADmodel. The density function estimates of the proposedMCPmethod
exhibit similar characteristics and are therefore omitted here. When compared with the density functions shown in
Figure 1, it is evident that each subgroup in Figure 2 displays an unimodal distribution with greater homogeneity.

The application of the proposed SCADmethod leads to the detection of two subgroups with sample sizes of n1 =
47 and n2 = 360, respectively. It is worth noting that the patients in the OPTION design were originally categorized
into two groups: a randomized group consisting of 356 patients, and a highly resistant group, comprising 51 patients.
Consequently, we can consider this historical grouping as a control group structure. We calculate the rand index

Table 5. The estimators of parameters in the example.

Tobit SCAD Proposed(SCAD) Proposed(MCP)

Intercept 1.98 1.35 4.29 1.47 4.38
Baseline 0.36 0.12 0.11
M184V 0.53 0.58 0.48
RAL −0.65 −0.61 −0.59
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Figure 1. Density plot of the response variable after adjusting for the effects of the covariates in the empirical example.

Figure 2. Density plots of response variable after adjusting for the effects of the covariates under two different intercept groups for
proposed SCADmethod.

Table 6. The in-sample error and out-of-sample error

Method In-sample error Out-of-sample error

Tobit SCAD 0.91 1.08
proposed(SCAD) 0.18 0.17
proposed(MCP) 0.21 0.23
control(SCAD) 0.34 0.38

(RI) for the proposed SCAD method based on the control group structure. The rand index (RI) is 0.757, which
indicates a substantial degree of agreement between the detected subgroup structure and the historical one. This
suggests that the subgroup composition may undergo changes as a result of antiretroviral therapy, a phenomenon
that is quite reasonable in the context of HIV patient management.

In addition, we compare the in-sample error and out-of-sample error for the aforementioned methods and the
Tobit SCAD method with known subgroup structures. These errors are defined as the mean square error of

(i) err(yi, ŷi) = (yi − ŷi)2, (ii) err(yi, ŷi−) = (yi − ŷi−)2, i = 1, . . . , n

across all samples, where ŷi is the fitted response, and ŷ−i is the predicted response using a 5-fold cross-validation
approach. To ensure comparability, we employ stratified sampling tomaintain a consistent left-censored ratio across
each test set. Table 6 presents the two types of criteria. For both two types of error, the Tobit SCAD method, when
applied with known subgroup structures, exhibits smaller errors compared to the homogeneous model. This result
underscores the significance of capturing the inherent heterogeneity within the dataset, as it enables more effective
modelling of the influential variables affecting the response.While the errors in the control group are slightly larger
compared to the proposed methods, it is essential to consider that these discrepancies may stem from changes in
drug resistance among patients during treatment. Moreover, the disparities with the control group could serve as a
basis for further examination of specific patient cases. It is conceivable that the existence of distinct groups may be
attributed to disparities in the treatment trajectories of patients or inherent physiological differences among indi-
viduals. In clinical terms, these findings suggest the potential for devising more precise and tailored management
protocols for specific patient subgroups, improving the overall treatment efficacy.
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7. Conclusion

This paper introduces a novel approach to analysing censored data with potential heterogeneity in intercept effects
by combining the penalty Tobit likelihood function with a concave fusion penalty. The proposed method can
automatically identify heterogeneous structures in intercept effects and conduct variable selection.

To address the optimization problem associated with the method, we propose an algorithm based on the gen-
eralized coordinate descent method and alternating direction method of multipliers. This algorithm simplifies the
optimization problem and reduces computational costs by employing a quadratic optimization function instead
of a complex nonlinear optimization problem. This choice ensures efficient computation, particularly in scenarios
with high complexity, while still maintaining good properties for the estimator. Furthermore, we establish the oracle
property of parameter estimators. It is shown that within the domain of the oracle solution, a local minimum point
of the objective function can be consistent with the oracle solution, providing theoretical support for the correctness
of the method. Our ADMM-GCD algorithm with SCAD or MCP performs well in both extensive simulation case
studies and the application of real data.

The proposedmethod can also be extended to incorporate the fusion of coefficient terms. However, there are still
challenges in applying this method to generalized linear models or survival models, and further research is needed
to develop algorithms and establish theoretical properties in these models.
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Appendix

A.1 Proof of Proposition 3.1

First, according to the definition of η(t+1), we have

L(α(t+1), δ(t+1), γ (t+1), η(t+1),ϕ(t)) ≤ L(α(t+1), δ(t+1), γ (t+1), η,ϕ(t))

for any η. Define

f (t+1) = inf
�α(t+1)−η=0

{
L(α(t+1), δ(t+1), γ (t+1), η,ϕ(t))

}
,

and then we have

L(α(t+1), δ(t+1), γ (t+1), η(t+1),ϕ(t)) ≤ f (t+1).

Let k be a non-negative integer, since ϕ(t+k−1) = ϕ(t) + ρ
∑k−1

i=1 (�α(t+i) − η(t+i)), so we can obtain that

L(α(t+k), δ(t+k), γ (t+k), η(t+k),ϕ(t+k−1))

= �n(α
(t+k), δ(t+k), γ (t+k))+

p∑
j=1

Pλ1(|δ(t+k)
j |)+

∑
i<j

Pλ2(|η(t+k)
ij |)

+ ϕ(t+k−1)T(�α(t+k) − η(t+k))+ ρ

2
‖�α(t+k) − η(t+k)‖22

= S(α(t+k), δ(t+k), γ (t+k), η(t+k))+ ρ

2
‖�α(t+k) − η(t+k)‖22

+
[
ϕ(t) + ρ

k−1∑
i=1

(�α(t+i) − η(t+i))

]
× (�α(t+k) − η(t+k))

≤ f (t+k).
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According to Yang and Zou (2013), we can infer that the GCD limit point (α(t+1), δ(t+1), γ (t+1)) is the coordinatewise mini-
mum of L(α, δ, γ , η(t),ϕ(t)). Additionally, the objective function is convex with respect to η. Then according to Theorem 4.1 in
Tseng (2001), the sequence (α(t), δ(t), γ (t), η(t)) converges to a coordinatewise minimum point (α∗, δ∗, γ ∗, η∗). Thus we have

f ∗ = lim
t→∞ f (t+1) = lim

t→∞ f (t+k)

= inf
�α∗−η=0

⎧⎨⎩�n(α
∗, δ∗, γ ∗)+

p∑
j=1

Pλ1(|δ∗j |)+
∑
i<j

Pλ2(|ηij|)
⎫⎬⎭ ,

and for all k ≥ 0

f ∗ ≥ lim
t→∞ L(α(t+k), δ(t+k), γ (t+k), η(t+k),ϕ(t+k−1))

= �n(α
∗, δ∗, γ ∗)+

p∑
j=1

Pλ1(|δ∗j |)+
∑
i<j

Pλ2(|η∗ij|)+ lim
t→∞ϕ(t)�(�α∗ − η∗)

+
(
k− 1

2

)
ρ‖�α∗ − η∗‖22.

Therefore, (
k− 1

2

)
ρ‖�α∗ − η∗‖22 ≤ inf

�α∗−η=0

⎧⎨⎩∑
i<j

Pλ2(|ηij|)
⎫⎬⎭−∑

i<j
Pλ2(|η∗ij|)− lim

t→∞ϕ(t)�(�α∗ − η∗).

Since the above inequality holds for all k ≥ 0, then limt→∞ ‖r(t)‖22 = ‖�α∗ − η∗‖22 = 0.
Moreover, since (α(t+1), δ(t+1), γ (t+1)) minimize L(α, δ, γ , η(t),ϕ(t)), by definition, we have that

∂L(α(t+1), δ(t+1), γ (t+1), η(t),ϕ(t))/∂α

= ∂S(α(t+1), δ(t+1), γ (t+1), η(t))/∂α +��ϕ(t) + ρ��(�α(t+1) − η(t))

= ∂S(α(t+1), δ(t+1), γ (t+1), η(t))/∂α +��
(
ϕ(t) + ρ(�α(t+1) − η(t))

)
= ∂S(α(t+1), δ(t+1), γ (t+1), η(t))/∂α +��ϕ(t+1) + ρ��(η(t+1) − η(t)) = 0.

Thus, ‖s(t+1)‖22 = ρ��(η(t+1) − η(t)) = −(∂S(α(t+1), δ(t+1), γ (t+1), η(t))/∂α +��ϕ(t+1)) Since limt→∞ ‖r(t)‖22 = ‖�α∗ −
η∗‖22 = 0,

lim
t→∞ ∂L(α(t+1), δ(t+1), γ (t+1), η(t),ϕ(t))/∂α

= lim
t→∞ ∂S(α(t+1), δ(t+1), γ (t+1), η(t))/∂α +��ϕ(t) = 0.

Therefore, limt→∞ ‖s(t+1)‖22 = 0.

A.2 Proof of Theorem 4.1

Let θ = (�̂(or) − �̂∗), q = K+ s+ 1.We can see that
√
nθ ∼ N(0,	) according to (20)where	 = [− 1

n∇2 log Ln(�)|�=�∗ ]−1.
In order to get the tail probability of the event in (21), we introduce a q-dimension vector a = (a1, . . . , aq)� satisfying

‖a‖2 = 1, that is a21 + . . .+ a2q = 1. It is obvious that a�θ ∼ N(0, 1na
�	a). Since

|a�θ | = |a1θ1 + . . .+ aqθq| ≤ |a1θ1| + . . .+ |aqθq|,
|a�θ | ≤ 1 · |θj|max. Then it is easy to get max‖a‖2=1 |a�θ | = maxj |θj|. Since 	 is a symmetric positive definite matrix, the
maximum value of the quadratic f = a�	a at ‖a‖ = 1 is the largest eigenvalue λmax of the matrix 	.

For a normal distribution X ∼ N(0, σ 2), the two-tailed probability inequality is

P(|X| < c) ≥ 1−
√

2
π
· σ
c
· exp

{
− c2

2σ 2

}
. (A1)

So

P(|a�θ | < φn) ≥ 1−
√

2
π
·
√
f /n
φn
· exp

{
− φ2

n
2(f /n)

}
.

Since the right-side of the above inequality with respect to f is a decreasing function, then

P
(

max
‖a‖2=1

|a�θ | < φn

)
≥ 1−

√
2
π
·
√

λmax/n
φn

· exp
{
− φ2

n
2(λmax/n)

}
.
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Therefore,

P
(∥∥�̂or −�∗

∥∥∞ < φn
) = P

(∥∥�̂or −�∗
∥∥∞ < φn

)
= P

(
max

j
|θj| < φn

)
= P

(
max
‖a‖2=1

|a�θ | < φn

)

≥ 1−
√

2
π
·
√

λmax/n
φn

· exp
{
− φ2

n
2(λmax/n)

}
. (A2)

Since λmax = O(1), we set φn = 1/
√
log n and t = √

log n/n. Then P(‖�̂or −�∗‖∞ < φn) ≥ 1− C
√

log n
n · exp{− n

2 log n } =
1− C · t exp{− 1

2t2 }, where C is a constant. Obviously we have t→ 0 and then P(‖�̂or −�∗‖∞ < φn)→ 1 when n→∞.

A.3 Proof of Theorem 4.2

First, with the underlying group division G1, . . . ,GK and true support setA we define

Ln(α, δ, γ ) = �n(α, δ, γ ), Pλ1(δ) = λ1

p∑
j=1

ρ(|δj|), Pλ2(α) = λ2
∑
i<j

ρ(|αi − αj|),

LOn (τ , δ1, γ ) = �On (τ , δ1, γ ), POλ1(δ1) = λ1
∑
j∈A

ρ(|δj|), POλ2(τ ) = λ2
∑
k<k′
|Gk| |Gk′ |ρ(|τi − τj|),

and denote

Qn(α, δ, γ ) = Ln(α, δ, γ )+ Pλ1(δ)+ Pλ2(α),

QO
n (τ , δ1, γ ) = LOn (τ , δ1, γ )+ POλ1(δ1)+ POλ2(τ ).

Let T : MG → RK be the mapping such as that T(α) is the K × 1 vector whose kth coordinate equals to the common value
of αi for i ∈ Gk. And let T0 : Rn → RK be the mapping such that T0(α) = {|Gk|−1

∑
i∈Gk

αi}Kk=1. Let S : Rp → Rs be the map-
ping such that S(δ) retains only the part of δ whose corner is labelled A, that is S(δ) = δA. And let S−1 : Rs →MB be the
mapping such that S−1(δ1) = (δ1

�, 0�Ac)
�. Obviously, when α ∈MG and δ ∈MB , T(α) = T0(α) and δA = S(δ). Moreover,

for every δ ∈MB and α ∈MG , we have Pλ1(δ) = POλ1(δA) and Pλ2(α) = POλ2(T(α)). For every δ1 ∈ Rs and τ ∈ RK , we have
Pλ1(S−1(δ1)) = POλ1(δ1) and Pλ2(T−1(τ )) = POλ2(τ ). Hence

Qn(α, δ, γ ) = QO
n (T(α), δA, γ ), QO

n (τ , δ1, γ ) = Qn(T−1(τ ), S−1(δ1), γ ). (A3)

Consider the neighbourhood of (α∗, δ∗, γ ∗)

� = {α ∈ Rn, δ ∈ Rp, γ ∈ R :
∥∥∥((α − α∗)�, (δ − δ∗)�, γ − γ ∗)�

∥∥∥∞ ≤ φn}.

Define the event E1 = {�̂ ∈ �}. By Theorem 1 we have P(Ec1) ≤ p1. For any α ∈ Rn and δ ∈ Rp let α0 = T−1(T0(α)) and
δ0 = S−1(δA). We will prove that (̂αor, δ̂or, γ̂ or) is a local minimizer of the objective function Qn(α, δ, γ ) with probability
approaching 1 through the following two steps.

(i) On the event E1, Qn(α
0, δ0, γ ) ≥ Qn(̂α

or, δ̂or, γ̂ or) for any (α�, δ�, γ )� ∈ � .
(ii) There is an event E2 such that P(Ec2) ≤ p2 = n1

n
√

log n
. On E1 ∩ E2, there is a neighbourhood of ((̂αor)�, (̂δor)�, γ̂ or)�,

denoted by�n = {α, δ : ‖((α − α̂or)�, (δ − δ̂
or

)�)�‖∞ ≤ tn} such thatQn(α, δ, γ ) ≥ Qn(α
0, δ0, γ ) for any (α�, δ�, γ )�

∈ � ∩�n for sufficiently large n.

Therefore, by the result of (i) and (ii), we have Qn(α, δ, γ ) ≥ Qn(̂α
or, δ̂or, γ̂ or) for any (α�, δ�, γ )� ∈ � ∩�n, so that

((̂αor)�, (̂δor)�, γ̂ or)� is a strict local minimizer of Qn(α, δ, γ ) on the event E1 ∩ E2 with P(E1 ∩ E2) ≥ 1− p1 − p2 for
sufficiently large n.

Step (i): Since (̂τ or, δ̂or1 , γ̂ or) is a global minimizer of LOn (τ , δ1, γ ), LOn (T0(α), S(δ), γ ) ≥ LOn (̂τ or , δ̂or1 , γ̂ or) for all
(α�, δ�, γ ) ∈ � . Then we derive that POλ1(S(δ)) is a constant which does not depend on δ for δ ∈ � and POλ2(T0(α)) is also
a constant which does not depend on α for α ∈ � . Let T0(α) = τ = (τ1, . . . , τK)�. For any k = k′, since

|τ ∗k − τ ∗k′ | = |τ ∗k − τ ∗k′ + τk − τk + τk′ − τk′ |
≤ |τk − τk′ | + |τ ∗k − τk| + |τk′ − τ ∗k′ |,

so

|τk − τk′ | ≥ |τ ∗k − τ ∗k′ | − 2 sup
k
|τk − τ ∗k |,
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and

sup
k
|τk − τ ∗k | = sup

k

∣∣∣∣∣∣
∑
i∈Gk

αi/|Gk| − τ ∗k

∣∣∣∣∣∣ = sup
k

∣∣∣∣∣∣
∑
i∈Gk

(αi − α∗k )/|Gk|
∣∣∣∣∣∣

≤ sup
k

sup
i∈Gk

|αi − α∗i | = ‖α − α∗‖∞. (A4)

Therefore, for all k and k′,

|τk − τk′ | ≥ |τ ∗k − τ ∗k′ | − 2‖αk − α∗k‖∞ ≥ bn − 2φn > aλ2,

which indicates ρ(|τk − τk′ |) is a constant by Condition (C2), and as a result PGλ2(T0(α)) is also a constant. Similarly, for any
j ∈ A, let S(α) = δ1 = (δ1, . . . , δp1), since

|δ∗j | = |δ∗j − δj + δj| ≤ |δ∗j − δj| + |δj|

By the condition |δA|min > (a+ 1)λ1, we have

|δj| ≥ ‖δ∗‖min − ‖δ∗ − δ‖∞ ≥ ‖δ∗‖min − ‖�∗ −�‖∞ ≥ (a+ 1)λ1 − φn ≥ aλ1.

As a result, both ρ(|δj|) and POλ1(S(δ)) are constants.
On conclusion, we have QO

n (T0(α), S(δ), γ ) ≥ QO
n (̂τ or, δ̂or1 , γ̂ or) for all (α�, δ�, γ ) ∈ � . In addition, QO

n (̂τ or, δ̂or1 , γ̂ or) =
Qn(̂α

or, δ̂or, γ̂ or) and QO
n (T0(α), S(δ), γ ) = Qn(T−1(T0(α)), S−1(δA), γ ) = Qn(α

0, δ0, γ ). Hence, we get Qn(α
0, δ0, γ ) ≥

Qn(̂α
or, δ̂or, γ̂ or), and the result in (i) is proved.

Step (ii): First, we introduce a neighbourhood �n = {α, δ : ‖((α − α̂or)�, (δ − δ̂
or

)�)�‖∞ ≤ tn} for a positive sequence tn.
For (α�, δ�, γ ) ∈ � ∩�n, by Taylor’s expansion at (α0, δ0), we have

Qn(α, δ, γ )− Qn(α
0, δ0, γ )

= −w(α − α0)+
n∑
i=1

∂Pλ2(α
m)

∂αi
(αi − α0

i )− v(δ − δ0)+
p∑

j=1

∂Pλ1(δ
m)

∂δj
(δj − δ0j )

= �1 + �2 + �3 + �4,

where w = [ 1
n1 (γ y1 − αm

1 − X1δ)
�,− 1

n0 g(−αm
0 − X0δ)

�]� = ( 1
n1 �
�
1 ,− 1

n0 �
�
2 )� and v = 1

n1X
�
1 (γ y1 − αm

1 − X1δ
m)− 1

n0
X�0 g(−αm

0 − X�0 δm) = 1
n1X
�
1 �1 + 1

n0X
�
0 �2 in which αm = ζ1α + (1− ζ1)α

0 and δm = ζ2δ + (1− ζ2)δ
0 for some ζ1, ζ2 ∈

(0, 1). Firstly,

�1 = −w�(α − α0) = −
K∑

k=1

∑
{i,j∈Gk}

wi(αi − αj)

|Gk|

= −
K∑

k=1

∑
{i,j∈Gk}

wi(αi − αj)

2|Gk|
−

K∑
k=1

∑
i,j∈Gk

wi(αi − αj)

2|Gk|

= −
K∑

k=1

∑
{i,j∈Gk}

(wj − wi)(αj − αi)

2|Gk|

= −
K∑

k=1

∑
{i,j∈Gk ,i<j}

(wj − wi)(αj − αi)

|Gk|
. (A5)

As shown in (A4),

‖α0 − α∗‖∞ = ‖τ − τ∗‖∞ ≤ ‖α − α∗‖∞. (A6)

Since αm = ζ1α + (1− ζ1)α
0,

‖αm − α∗‖∞ ≤ ‖α − α∗‖∞ ≤ φn. (A7)

As the same steps in (A4) and (A6),

‖δ0 − δ∗‖∞ = ‖δ1 − δ1
∗‖∞ ≤ ‖δ − δ∗‖∞. (A8)

Since δm = ζ2δ + (1− ζ2)δ
0,

‖δm − δ∗‖∞ ≤ ‖δ − δ∗‖∞ ≤ φn. (A9)
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Then by Condition (C1),

�1 = γ

γ ∗
(α∗1 + X1δ

∗ + ε1γ
∗)− X1δ

m − αm
1

= γ − γ ∗

γ ∗
(α∗1 + X1δ

∗)+ α∗1 − αm
1 + X1(δ

∗ − δm)+ (γ − γ ∗ + γ ∗)ε1,

‖�1‖∞ ≤ ‖γ − γ ∗‖∞
‖γ ∗‖∞ (‖α∗1‖∞ + ‖X1δ

∗‖∞)+ ‖α∗1 − αm
1 ‖∞

+ ‖X1(δ
∗ − δm)‖∞ + (‖γ − γ ∗‖∞ + ‖γ ∗‖∞)‖ε1‖∞

≤ φn

C0
(C3
√
n1 + C1s · C2

√
s)+ φn + C1s · φn + (φn + C0)‖ε1‖∞.

Consider the ith element of the vector in �2, define a positive constant ξi satisfying

gi(−X0δ
m − αm

0 ) ≤ | − x�i δm − αm
i | + ξi

≤ | − x�i (δm − δ∗)| + |αm
i − α∗i | + | − x�i δ∗ − α∗i | + ξi.

Define ξ = max{ξ1, . . .mξn}, so we have
‖�2‖∞ ≤ ‖ − X0(δ

m − δ∗)‖∞ + ‖αm
0 − α∗0‖∞ + ‖X0δ

∗ + α∗0‖∞ + ξ

≤ ‖X0‖∞‖δm − δ∗‖∞ + ‖αm
0 − α∗0‖∞ + ‖X0‖∞‖δ∗‖∞ + ‖α∗0‖∞ + ξ

≤ C1s · φn + φn + C1s · C2
√
s+ C3

√
n0 + ξ .

Therefore,

max
i,j
|wj − wi| ≤ 2‖w‖∞ ≤ 2max

{‖�1‖∞
n1

,
‖�2‖∞

n0

}
.

By Condition (C3), set a constant c1

P

⎛⎝‖ε1‖∞ >

√
log n
c1

⎞⎠ ≤ n1∑
i=1

P

⎛⎝|εi| >
√
log n
c1

⎞⎠ ≤ n1
n
√
log n

.

Thus there is an event E2 such that P(Ec2) ≤ n1
n
√

log n
, and on the event E2,

|Gmin|−1 max
i,j
|wj − wi|

≤ 2|Gmin|−1 max

{
φn

n1

(
C′1
√
n1 + C′2s

3
2 + C′3s+ C′4

√
log n

)
+ C′5

√
log n
n1

,

1
n0

(
C′6
√
n0 + C′7s

3
2 + C′8φns+ C′9φ + ξ

)}
.

Under the conditon (C4), it is easy to get λ2 � |Gmin|−1 max( s
3
2
n0 ,

1√
n0
,
√

log n
n1 ), and hence

λ2 � |Gmin|−1 max
i,j
|wj − wi|. (A10)

Then, denote ρ̄(t) = ρ′(|t|)sgn(t),

�2 = λ2

n∑
i=1

∑
j=i

ρ̄(αm
i − αm

j )(αi − α0
i )

= λ2
∑
i<j

ρ̄(αm
i − αm

j )(αi − α0
i )+ λ2

∑
i>j

ρ̄(αm
i − αm

j )(αi − α0
i ).

Swap i and j in the second term of the second equation,

�2 = λ2
∑
i<j

ρ̄(αm
i − αm

j )(αi − α0
i )+ λ2

∑
j>i

ρ̄(αm
j − αm

i )(αj − α0
j )

= λ2
∑
i<j

ρ̄(αm
i − αm

j )(αi − α0
i )− λ2

∑
i<j

ρ̄(αm
i − αm

j )(αj − α0
j )

= λ2
∑
i<j

ρ̄(αm
i − αm

j ){(αi − α0
i )− (αj − α0

j )}. (A11)



20 Y. ZHANG ET AL.

When i, j ∈ Gk,α0
i = α0

j , and αm
i − αm

j has the same sign as αi − αj, and hence

�2 = λ2

K∑
i=1

∑
i,j∈Gk,i<j

ρ′(|αm
i − αm

j |)|αi − αj|

+ λ2
∑
k<k′

∑
i∈Gk ,j∈Gk′

ρ̄(αm
i − αm

j ){(αi − α0
i )− (αj − α0

j )}.

Then, for k = k′, i ∈ Gk, j ∈ Gk′ , since

|α∗i − α∗j | ≤ |αm
i − αm

j | + |α∗i − αm
i | + |αm

j − α∗j |,

we have

|αm
i − αm

j | ≥ min
i∈Gk ,j∈Gk′

|α∗i − α∗j | − 2‖αm − α∗‖∞

≥ bn − 2‖α − α∗‖∞ ≥ bn − 2φn ≥ aλ2,

and thus ρ̄(αm
i − αm

j ) = 0. Therefore,

�2 = λ2

K∑
i=1

∑
i,j∈Gk ,i<j

ρ′(|αm
i − αm

j |)|αi − αj|. (A12)

Moreover, by the same reasoning as (A4), for i, j ∈ G we have

‖α0 − α̂or‖∞ ≤ ‖α − α̂or‖∞.
Then

|αm
i − αm

j | ≤ |αm
i − α0

i | + |αm
j − α0

j |
≤ 2‖αm − α0‖∞ ≤ 2‖α − α0‖∞
≤ 2(‖α − α̂or‖∞ + ‖α0 − α̂or‖∞)

≤ 4‖α − α̂or‖∞ ≤ 4tn. (A13)

Since ρ(·) is concave, ρ′(|αm
i − αm

j |) ≥ ρ′(4tn). As a result,

�2 ≥ λ2

K∑
k=1

∑
i,j∈Gk,i<j

ρ′(4tn)|αi − αj|. (A14)

On the other hand, we have

�3 = −v(δ − δ0)

= −
⎛⎝∑

j∈A
vj(δj − δ0j )+

∑
j∈Ac

vj(δj − δ0j )

⎞⎠ =∑
j∈Ac

vjδj. (A15)

Since �3 = X�1 �1 and �4 = X�0 �2, on the event E2,

max |vj| ≤
(‖X1‖∞

n1
‖�1‖∞ + ‖X0‖∞

n0
‖�2‖∞

)
≤ C1s

(
1
n1
‖�1‖∞ + 1

n0
‖�2‖∞

)

≤ C1s

{
φn

n1

(
C′1
√
n1 + C′2s

3
2 + C′3s+ C′4

√
log n

)
+ C′5

√
log n
n1

+ 1
n0

(
C′6
√
n0 + C′7s

3
2 + C′8φns+ C′9φ + ξ

)}
. (A16)

Under the condition (C4), we can get

λ1 � max
j
|δj|. (A17)
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Then,

�4 = λ1

p∑
j=1

ρ̄(δmj )(δj − δ0j )

= λ1

⎛⎝∑
j∈A

ρ̄(δmj )(δj − δ0j )+
∑
j∈Ac

ρ̄(δmj )(δj − δ0j )

⎞⎠ . (A18)

When j ∈ Ac, δ0j = 0, and δmj has the same sign as δj. Hence

�4 = λ1

⎛⎝∑
j∈A′c

ρ′(|δmj |)|δj| +
∑
j∈A

ρ̄(δmj )(δj − δ0j )

⎞⎠ . (A19)

For j ∈ A, by (A9),

|δmj | ≥ min
j∈A
|δ∗j | − ‖δ∗ − δm‖∞ ≥ (a+ 1)λ1 − φn ≥ aλ1. (A20)

Thus ρ̄(δmj ) = 0. Therefore,

�4 = λ1
∑
j∈Ac

ρ′(|δmj |)|δj|. (A21)

Furthermore, by the same process as (A13), for j ∈ Ac

|δmj | ≤ ‖δm − δ0‖∞ ≤ ‖δ − δ0‖∞
≤ ‖δ − δ̂

or‖∞ + ‖δ0 − δ̂
or‖∞

≤ 2‖δ − δ̂
or‖∞ ≤ 2tn. (A22)

Let tn = o(1). Then ρ′(4tn)→ 1, ρ′(2tn)→ 1. Therefore, by (A5), (A10) and (A14),

�1 + �2 ≥
K∑

k=1

∑
i,j∈Gk,i<j

[
λ2ρ
′(4tn)− |Gmin|−1 max

i,j
|wj − wi|

]
|αi − αj| ≥ 0. (A23)

And by (A15), (A17) and (A21),

�3 + �4 ≥
∑
j∈Ac

[
λ1ρ
′(2tn)−max

j
|vj|

]
|δj| ≥ 0. (A24)

Therefore, for sufficiently large n,

Qn(α, δ, γ )− Qn(α
0, δ0, γ ) = �1 + �2 + �3 + �4 ≥ 0,

so that the result (ii) is proved.
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