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ABSTRACT
Weconsider amodel identificationproblem inwhichanoutcomevariable containsnonignorable
missing values. Statistical inference requires a guarantee of the model identifiability to obtain
estimators enjoying theoretically reasonable properties such as consistency and asymptotic nor-
mality. Recently, instrumental or shadow variables, combined with the completeness condition
in the outcomemodel, have been highlighted tomake amodel identifiable. In this paper, we elu-
cidate the relationship between the completeness condition andmodel identifiability when the
instrumental variable is categorical. We first show thatwhen both the outcome and instrumental
variables are categorical, the two conditions are equivalent. However, when one of the out-
come and instrumental variables is continuous, the completeness conditionmay not necessarily
hold, even for simple models. Consequently, we provide a sufficient condition that guarantees
the identifiability of models exhibiting a monotone-likelihood property, a condition particularly
useful in instances where establishing the completeness condition poses significant challenges.
Using observed data, we demonstrate that the proposed conditions are easy to check for many
practical models and outline their usefulness in numerical experiments and real data analysis.
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1. Introduction

There has been a rapidly growing movement to utilize all the available data that may explicitly, even implicitly,
contain missing values, such as causal inference (Imbens & Rubin, 2015) and data integration (Hu et al., 2022;
Yang & Kim, 2020). For such datasets, appropriate analysis of missing data is indispensable to correct selection bias
owing to the missingness. In recent years, analysis of missing data under missing at random (MAR) assumption
(Little &Rubin, 2019) has graduallymatured (Kim&Shao, 2021; Robins et al., 1994). Althoughmodel identifiability
is one of the most fundamental conditions in constructing the asymptotic theory, removing the MAR assumption
makes statistical inference drastically difficult, especially inmodel identification (Miao et al., 2016). Estimationwith
unidentifiable models may provide multiple solutions that have exactly the same model fitting. Several researchers
have considered giving sufficient conditions for the model identification under missing not at random (MNAR).

Constructing observed likelihood consists of two distributions: (R) responsemechanism and (O) outcome distri-
bution (Kim & Shao, 2021). Miao et al. (2016) considered identification condition with Logistic, Probit, and Robit
(cumulative distribution function of t-distribution) models for (R) and normal and t (mixture) distributions for
(O). Cui et al. (2017) assumed Logistic, Probit, and cLog-log models for (R) and the generalized linear models for
(O). These studies depend heavily on the model specification of both (R) and (O). Wang et al. (2014) introduced a
covariate called instrument or shadow variable and demonstrated that the use of the instrument could considerably
relax conditions on (R) and (O). For example, (O) requires only the monotone-likelihood property, which includes
a variety of models, such as the generalized linear model. Tang et al. (2003) and Miao and Tchetgen (2018) derived
conditions for model identifiability without postulating any assumptions on (R) with the help of the instrument.
Miao et al. (2019) further relaxed the assumption under an assumption referred to as the completeness condition on
(R) (D’Haultfœuille, 2010, 2011). For example, the generalized linear model with continuous covariates satisfies the
completeness condition. To the best of our knowledge, this combination of an instrument on (R) and completeness
on (O) is the most general condition for model identification and has been accepted in numerous studies (Yang
et al., 2019; J. Zhao & Ma, 2022).

Generally, assumptions on (O) rely on the distribution of the complete data, which is untestable from observed
data. Recently, modelling (O’) the observed or respondents’ outcome model, instead of (O), has been used to relax
the subjective assumption (Miao et al., 2019; Riddles et al., 2016). However, the observed likelihood with (R) and
(O’) involves an integration thatmakes the identification problem intractable.Morikawa andKim (2021) andBeppu
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et al. (2021) established that the integration can be computed explicitly with Logistic models for (R) and generalized
linear models for (O’) and derived identification condition. For general response mechanisms and respondents’
outcome distributions, the model identification remains an open question. Furthermore, when the instrument is
categorical such as smoking history and sex, the completeness condition is not available. For example, Ibrahim
et al. (2001) considered a study on the mental health of children in Connecticut and used the parents’ report of the
psychopathology of the child as the binary instrument.

In this paper, we consider an identification problem with an instrument for (R) and (O’) that satisfies the
monotone-likelihood ratio property. Note that although our model setup is similar to Wang et al. (2014), we can
check the validity of (O’) with observed data, for example, by using the information criteria such as AIC and BIC.
Furthermore, we can use semiparametric/nonparametric methods for modelling both (O’) and (R).

The rest of this paper is organized as follows. Section 2 introduces the notation and defines model identifiability.
Section 3 derives the proposed identification condition. We demonstrate the effects of identifiability via a lim-
ited numerical study in Section 4. Moreover, application to real data is presented in Section 5. Finally, concluding
remarks are summarized in Section 6. All the technical proofs are relegated to the Appendix.

2. Basic setup

2.1. Observed likelihood

Let {xi, yi, δi}ni=1 be independent and identically distributed samples from a distribution of (x, y, δ), where x is a
fully observed covariate vector, y is an outcome variable subject to missingness, and δ is a response indicator of
y being 1(0) if y is observed (missing). We use the generic notation p(·) and p(· | ·) for the marginal density and
conditional density, respectively. For example, p(x) is the marginal density of x, and p(y | x) is the conditional
density of y given x. We model the MNAR response mechanism P(δ = 1 | x, y) and consider its identification. The
observed likelihood is defined as∏

i:δi=1

P(δi = 1 | yi, xi)p(yi | xi)
∏
i:δi=0

∫ {
1 − P(δi = 1 | y, xi)

}
p(y | xi) dy. (1)

We say that this model is identifiable if parameters in (1) are identified, which is equivalent to parameters in P(δ =
1 | y, x)p(y | x) being identified. This identification condition is essential even for semiparametric models such
as an estimator defined by moment conditions (Morikawa & Kim, 2021). However, simple models can be easily
unidentifiable. For example, Example 1 inWang et al. (2014) presented an unidentifiable model when the outcome
model is normal, and the response mechanism is a Logistic model.

There is an alternative way to express the relationship between y and x. A disadvantage of modelling p(y | x) is
its subjective assumption on the distribution of complete data, not of observed data. In other words, if we made
assumptions about p(y | x) and ensured its identifiability, we could not verify the assumptions using the observed
data. By contrast, this issue can be overcome by modelling p(y | x, δ = 1) because p(y | x, δ = 1) is the outcome
model for the observed data, and we can check its validity using ordinal information criteria such as AIC and BIC.
Therefore, we model p(y | x, δ = 1) and consider the identification condition in Section 3. Hereafter, we assume
two parametric models p(y | x, δ = 1; γ ) and P(δ = 1 | x, y;φ), where γ and φ are parameters of the outcome and
response models, respectively. Although our method requires two parametric models, the class of identifiable mod-
els is very large. For example, it can include semiparametric outcome models for p(y | x, δ = 1; γ ) and general
response models P(δ = 1 | x, y;φ) other than Logistic models, as discussed in Example 3.7.

2.2. Estimation

We present a procedure of parameter estimation based on parametric models of p(y | x, δ = 1; γ ) and P(δ = 1 |
x, y;φ). Let γ̂ be the maximum likelihood estimator of γ . The observed likelihood (1) yields to the mean score
equation for φ (Kim & Shao, 2021):

n∑
i=1

{
δi
∂ logπ(xi, yi;φ)

φ
− (1 − δi)

∫
∂π(xi, y;φ)/∂φ · p(y | x) dy∫ {1 − π(xi, y;φ)}p(y | x) dy

}
= 0

where π(x, y;φ) = P(δ = 1 | x, y;φ). By using Bayes’ formula p(y | x) ∝ p(y | x, δ = 1)/π(x, y;φ), the mean score
can be written as

n∑
i=1

{
δis1(xi, yi;φ)+ (1 − δi)s0(xi;φ)

} = 0,
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where

s1(x, y;φ) = ∂ logπ(x, y;φ)
∂φ

, s0(x;φ) = −
∫
s1(x, y;φ)p(y | x, δ = 1) dy∫ {

1/π(x, y;φ)− 1
}
p(y | x, δ = 1) dy

.

To compute the two integrations in s0(·), we can use the fractional imputation (Kim, 2011). As described in Riddles
et al. (2016), the EM algorithm is also applicable.

3. Identifiability

3.1. Definition of identification

Recall that the identification condition in (1) is for parameters in P(δ = 1 | y, x)p(y | x). As seen in Section 2.2, the
conditional density p(y | x) is represented by p(y | x, δ = 1; γ ) and P(δ = 1 | x, y;α,φ) by Bayes’ formula. Thus,
using the formula, identification with these models changes to parameters in ϕ(y, x;φ, γ ), where

ϕ(y, x;φ, γ ) = p(y | x, δ = 1; γ )∫
p(y | x, δ = 1; γ )/π(x, y;φ) dy

. (2)

Strictly speaking, the identification condition is ϕ(y, x;φ, γ ) = ϕ(y, x;φ′, γ ′) with probability 1 implies that
(φ�, γ �) = (φ′�, γ ′�). Generally, the integral in the denominator of (2) does not have the closed form, which
makes deriving a sufficient condition for the identifiability quite challenging. Morikawa and Kim (2021) identified
a combination of Logistic models and normal distributions for response and outcome models has a closed form
of the integration and derived a sufficient condition for the model identifiability. Beppu et al. (2021) extended the
model to a casewhere the outcomemodel belongs to the exponential familywhile the responsemodel is still a Logis-
tic model. However, when the response mechanism is general, simple outcome models such as normal distribution
can be unidentifiable.

Example 3.1: Suppose that the respondents’ outcome model is y | (δ = 1, x) ∼ N(γ0 + γ1x, 1), and the response
model is P(δ = 1 | x, y) = �(α0 + α1x + βy), where � is a known distribution function such that the integra-
tion in (2) exists; then, this model is unidentifiable. For example, different parametrization (α0,α1,β , γ0, γ1) =
(0, 1, 1, 0, 1), (α′

0,α
′
1,β

′, γ ′
0, γ

′
1) = (0, 3,−1, 0, 1) yields the same value of the observed likelihood.

Recently, widely applicable sufficient conditions have been proposed. Assume that a covariate x has two
components, x = (u�, z�)�, such that

(C1) z ⊥⊥ δ | (u, y) and z �⊥⊥ y | (δ = 1, u).

The covariate z is called an instrument (D’Haultfœuille, 2010) or a shadow variable (Miao & Tchetgen Tchet-
gen, 2016). Miao et al. (2019) derived sufficient conditions for model identifiability by combining the instrument
and the completeness condition:

(C2) For all square-integrable function h(u, y), E[h(u, y) | δ = 1, u, z] = 0 almost surely implies h(u, y) = 0
almost surely.

Lemma 3.2 (Identification condition by Miao et al., 2019): Under the conditions (C1) and (C2), the joint
distribution p(y, u, z, δ) is identifiable.

Although the completeness condition is useful and applicable for general models, a simple model with a
categorical instrument does not hold the completeness condition.

Example 3.3 (Violating completeness with categorical instrument): Suppose y | (δ = 1, u, z) follows the normal
distribution N(u + z, 1), and an instrument z is binary taking 0 or 1. This distribution does not satisfy the com-
pleteness condition because the conditional expectation E[h(u, y) | δ = 1, u, z] = 0 when h(u, y) = 1 + y − u −
(y − u)2.

A vital implication of Example 3.3 is that instruments are no longer evidence of model identification when the
instrument is categorical. Developing the identification condition for models with discrete instruments is impor-
tant in applications (Ibrahim et al., 2001). We separately discuss two cases: (i) both y and z are categorical; (ii)
respondents’ outcome model has the monotone-likelihood ratio property.
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When all variables, y and z, are categorical, the model can be fully nonparametric. Theorem 3.4 demonstrates
that, under these conditions, the completeness and identifiability conditions are equivalent. See Appendix 2 in
Riddles et al. (2016) for the estimation of such fully nonparametric models.

Theorem 3.4: When both y and z are categorical, under condition (C1), the joint distribution p(y, u, z, δ) is
identifiable if and only if condition (C2) holds.

As evidenced in Lemma 3.2, condition (C2) is generally sufficient for model identifiability, but Theorem 3.4 also
reveals that it is necessary when y and z are categorical.

Next, we consider the identification condition for the other case (ii). LetSy be the support of the random variable
y. We assume the following four conditions:

(C3) The response mechanism is

P(δ = 1 | y, x;φ) = P(δ = 1 | y, u;φ) = �{h(u;α)+ g(u;β)m(y)}, (3)

where φ = (α�,β)�, m : Sy → R and � : R → (0, 1] are known continuous strictly monotone functions,
and h(u;α) and g(u;β) are known injective functions of α and β , respectively.

(C4) The density or mass function p(y | x, δ = 1; γ ) is identifiable, and its support does not depend on x.
(C5) For all u ∈ Su, there exist z1 and z2, such that p(y | u, z1, δ = 1) �= p(y | u, z2, δ = 1), and p(y | u, z1, δ =

1)/p(y | u, z2, δ = 1) is monotone.
(C6) ∫

p(y | x, δ = 1; γ )
�{h(u;α)+ g(u;β)m(y)} dy < ∞ a.s.

The condition (C3) means that the random variable z plays a role of an instrument. The condition (C4) is
the identifiability of p(y | x, δ = 1; γ ), which is testable from the observed data. The condition (C5) assumes a
monotone-likelihood property on the outcome model, which was also used in Wang et al. (2014) for the complete
data. The condition (C6) is necessary for (1) to be well-defined. It is essentially the same condition as Theorem 3.1
(I1) of Morikawa and Kim (2021). This condition is always true when the support of y is finite. However, it must
be carefully verified when y is continuous. See Proposition 3.8 below for useful sufficient conditions when the
respondents’ outcome model is normal distribution.

Under conditions (C3)–(C6), we obtain the desired identification condition.

Theorem 3.5: The parameter (φ�, γ �)� is identifiable if the conditions (C1) and (C3)–(C6) hold.

We provide an example of outcome models satisfying the condition (C5).

Example 3.6 (Model satisfying (C5)): Let density functions in the exponential family be

p(y | x, δ = 1; γ ) = exp
(
yθ − b(θ)

τ
+ c(y; τ)

)
,

where θ = θ(η), η = ∑L
l=1 ηl(x)κl, κ = (κ1, . . . , κL)�, and γ = (τ , κ�)�. Then the density ratio becomes

p(y | u, z1, δ = 1)
p(y | u, z2, δ = 1)

∝ exp
(
θ1 − θ2

τ
y
)
,

where xi = (u, zi) and θi = θ{∑L
l=1 ηl(xi)κl}, i = 1, 2. Therefore, the density ratio is monotone.

Example 3.7 (Model satisfying (C6)): In application, it is often reasonable to assume a normal distribution on the
respondents’ outcomemodel. Focusing on the tail of the outcomemodel, we provide a sufficient condition to check
(C6) for models with general response mechanisms.

Proposition 3.8: Suppose that the observed distribution p(y | x, δ = 1) is normal distribution N(μ(x; κ), σ 2), the
response mechanism is (3)with m(y) = y and g(u;β) = β, and the strictly monotone increasing function� meets the
following condition:

∃s ∈ (0, 2) s.t. lim inf
z→−∞ �(z) exp(|z|s) > 0. (4)

Then, this model satisfies (C6).
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The condition (4) is easy to check. For example, it holds for Logistic and Robit functions but not for the Pro-
bit function. According to Proposition 3.8, it is possible to estimate μ(x; κ) with observed data using splines and
other nonparametric methods, which allows us to use very flexible models. Furthermore, we can also estimate the
response mechanism using nonparametric methods because it does not impose any restrictions on the functional
form of h(u;α).

4. Numerical experiment

Wepresent the effects of identifiability in numerical experiments by comparingweak and strong identifiablemodels.
We prepared four Scenarios S1–S4:

S1: (Outcome: Normal, Response: Logistic)
[y | u, z, δ = 1] ∼ N(κ0 + κ1u + κ2z, σ 2), logit{P(δ = 1 | u, y;α,β)} = α0 + α1u + βy, u ∼ N(0, 12), and
z ∼ B(1, 0.5), where (κ0, κ1, σ 2)� = (0.3, 0.4, 1/

√
22)� and (α0,α1,β)� = (0.7,−0.2, 0.29)�.

S2: (Outcome: Normal, Response: Cauchy)
[y | u, z, δ = 1] ∼ N(κ0 + κ1u + κ2z, σ 2), P(δ = 1 | u, y;α,β) = �(α0 + α1u + βy), u ∼ Unif(−1, 1), and
z ∼ B(1, 0.7), where (κ0, κ1, σ 2)� = (−0.36, 0.59, 1/

√
22)�, (α0,α1,β)� = (0.24,−0.1, 0.42)�, and � is the

cumulative distribution function of the Cauchy distribution.
S3: (Outcome: Bernoulli, Response: Probit)

[y | u, z, δ = 1] ∼ B(1, p(u, z; κ)}),P(δ = 1 | u, y;α,β) = �(α0 + α1u + βy),u ∼ N(0, 12), and z ∼ N(0, 12),
where p(u, z; κ) = 1/{1 + exp(−κ0 − κ1u − κ2z), (κ0, κ1, κ2)� = (−0.21, 3.8, 1.0)�, (α0,α1,β)� = (0.4,
0.39, 0.3)�, and� is the cumulative distribution function of the standard normal.

S4: (Outcome: Normal+nonlinear mean structure, Response: Cauchy or Logistic)
[y | u, z, δ = 1] ∼ N(μ(x), 0.52), P(δ = 1 | u, y;α,β) = �(α0 + α1u + βy), u ∼ Unif(−1, 1), and z ∼ B
(1, 0.5), where μ(x) = z + cos(2πu)+ exp(z + u), (α0,α1,β)� = (0.1,−0.2, 0.3)�, and� is the cumulative
distribution function of the Cauchy or Logistic distribution.

In S1 and S2, the strength of the identification can be adjusted by changing the parameter κ2 because κ2 = 0
indicates that the model is unidentifiable by Example 3.1. On the other hand, we can verify that the models in S3
and S4 are identifiable by Theorem3.5. For example, in S4, we can see that checking (C3) and (C4) is straightforward
to the setting, while (C5) and (C6) hold from Example 3.6 and Proposition 3.8, respectively. From S3 and S4, we can
confirm the successful inference even in the case of discrete outcome and complex mean structures, respectively.

We generated 1000 independent Monte Carlo samples and computed two estimators for E[y] and β with two
methods: fractional imputation (FI) and complete case (CC) estimators, which use only completely observed data.
The estimator for E[y] is computed by the standard inverse probability weighting method with estimated response
models (Riddles et al., 2016). We used correctly specified models for Scenarios S1–S3 but used nonparametric
models for Scenario S4 because it is unrealistic to assume that the complicated mean structure is known. The R
package ‘crs’ specialized in nonparametric spline regression on themixture of categorical and continuous covariates
(Nie & Racine, 2012) is used to estimate the respondents’ outcome model. Response models are estimated by using
the method discussed in Section 2.2.

Bias, root mean squared error (RMSE), and coverage rate for 95% confidence intervals in S1–S4 are reported in
Table 1. In all the Scenarios, CC estimators have a significant bias, and the coverage rates are far from 95%, while
FI estimators work well when the model is surely identifiable. When κ2 is small in S1 and S2, the performance of
variance estimation with FI is poor, as expected, although that of point estimates is acceptable. The results in S4
indicate that the model is identifiable even if we use a nonparametric mean structure, and the estimates are almost
the same between the two response models.

5. Real data analysis

We analyzed a dataset of 2139 HIV-positive patients enrolled in AIDS Clinical Trials Group Study 175 (ACTG175;
Hammer et al., 1996). In this analysis, we specify 532 patients for analysis who received zidovudine (ZDV)
monotherapy. Let each y, x1, and x2 be the CD4 cell count at 96 ± 5 weeks, at the baseline, and at 20 ± 5 weeks, x3
be the CD8 cell count at the baseline, and z be sex. The outcome was subject to missingness with a 60.34% observa-
tion rate, while all covariates were observed. To make estimation stable and easy, we standardized all the data. We
expect that z (sex) is a reasonable choice for an instrument variable because the information is a biological value,
which affects the value of CD4, but has little effect on the response probability.
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Table 1. Results of S1–S4: Bias, root mean square error (RMSE), and coverage rate
(CR,%) with 95% confidence interval are reported.

Scenario Parameter κ2 Method Bias RMSE CR

S1 E[y] 1.0 CC 0.053 0.066 73.5
FI 0.000 0.043 95.4

0.5 CC 0.039 0.053 80.9
FI −0.001 0.059 97.1

0.1 CC 0.034 0.049 83.0
FI 0.021 0.136 99.8

β 1.0 FI 0.001 0.163 95.2
0.5 FI 0.003 0.330 98.6
0.1 FI −0.146 0.865 100

S2 E[y] 1.0 CC 0.146 0.152 5.7
FI −0.004 0.051 94.8

0.5 CC 0.130 0.136 7.7
FI −0.008 0.086 86.2

0.1 CC 0.127 0.133 9.4
FI −0.007 0.105 92.4

β 1.0 FI 0.008 0.148 95.4
0.5 FI 0.044 0.365 100
0.1 FI 0.033 0.448 100

S3 E[y] – CC 0.100 0.102 0.3
– FI 0.001 0.022 95.3

β – FI −0.023 0.279 95.0
S4 E[y] – CC(Logistic) 0.341 0.355 5.4

– FI(Logistic) 0.005 0.079 95.4
– CC(Cauchy) 0.296 0.312 10.7
– FI(Cauchy) 0.007 0.080 94.3

β – FI(Logistic) 0.006 0.050 94.7
– FI(Cauchy) 0.011 0.063 93.8

Note: CC: complete case; FI: fractional imputation.

Figure 1. Residual plots of respondents’ outcome in ACTG175 data.

Patients who are suffering from amild illness of HIV tend to have higher CD4 cell count; thus, one may consider
that missingness of the outcome relates to serious conditions and may expect that the missing value of the outcome
would be a lower CD4 cell count than the respondent. We therefore considered five different MNAR response
models:

P(δ = 1 | x1, x2, x3, y) = �(α0 + α1x1 + α2x2 + α3x3 + βy),

where � represents either the Logistic function or the distribution functions of the Cauchy or t distribution with
degrees of freedom v (= 2, 5, 10). Theorem 3.5 and Proposition 3.8 ensure that all the models with these five
response models are identifiable, even when the instrumental variable z is discrete. From the above conjecture
on missing values, the sign of β is expected to be negative. We assumed that the respondent’s outcome is a normal
distribution with a nonparametric mean structure and estimated by the ‘crs’ R package as considered in Scenario
S4 in Section 4. The residual plots shown in Figure 1 and the computed R2-value (= 0.453) signify the assumed
distribution on the respondents’ outcome fit well. Table 2 reports the estimated parameters and their estimated stan-
dard errors calculated by 1000 bootstrap samples. The results of the five response models were almost similar. This
suggests that the response mechanism is robust to the choice of response models. Although we cannot determine
whether it is MNAR or MAR because the estimated standard error for β is large, the point estimate is negative, as
we expected. This result is consistent with the result in P. Zhao et al. (2021).
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Table 2. Estimated parameters: Estimates and standard errors for the target parameters are reported.

Parameter Model Estimate SE Parameter Model Estimate SE

α0 Logistic 0.464 0.104 Logistic 0.125 0.156
Cauchy 0.417 0.260 Cauchy 0.108 0.139
T2 0.341 0.081 α1 T2 0.091 0.113
T5 0.306 0.069 T5 0.082 0.102
T10 0.295 0.066 T10 0.080 0.099

α2 Logistic 0.255 0.192 Logistic 0.093 0.107
Cauchy 0.244 0.207 Cauchy 0.083 0.097
T2 0.196 0.148 α3 T2 0.069 0.079
T5 0.169 0.126 T5 0.062 0.070
T10 0.160 0.120 T10 0.060 0.068

β Logistic −0.032 0.314 Logistic 276.70 13.476
Cauchy −0.030 0.387 Cauchy 276.51 14.107
T2 −0.027 0.235 E[y] T2 276.57 13.437
T5 −0.021 0.203 T5 276.61 13.271
T10 −0.019 0.194 T10 276.63 13.217

Note: Logistic and Cauchy are Fractional Imputation using Logistic and Cauchy distributions for the response mechanism. Tv : t distribution function with
degrees of freedom v (= 2, 5, 10).

6. Conclusion

In this paper, we proposed a new identification condition for models using respondents’ outcome and response
models. Although our method requires the specification of the two models, the model can be very general with the
help of an instrument. As considered in Scenario S4 in Section 4, the mean function in the respondents’ outcome
model can be nonparametric, and the response model can be any strictly monotone function, other than Logistic
models. Our condition guaranteesmodel identifiability evenwhen instruments are categorical, which is not covered
by previous conditions. Another advantage of using our method is the identification condition is easy to verify with
observed data.

However, our method has some limitations. First, respondents’ outcome models need to have the monotone-
likelihood property by Condition (C5). For example, we cannot deal with mixture models in our framework.
Second, the specification of instruments is necessary in advance. To date, some studies on finding the instruments
have been proposed (P. Zhao et al., 2021), but there are still no gold standard methods.
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Appendix. Technical proofs

We first provide a technical result to prove Theorem 3.4.

Lemma A.1: Let a, b, and c be any positive real numbers. Assume that r1 and r2 are positive real numbers satisfying

− ab
a + b

<
r21 − r22
r21r

2
2

< c. (A1)

Then, there exist 0 < π
(k)
j < 1 (j = 1, 2, 3; k = 1, 2) such that

3∑
j=1

π
(1)
j = r21,

3∑
j=1

π
(2)
j = r22, (A2)

and
1

π
(1)
1

− 1

π
(2)
1

= a,
1

π
(1)
2

− 1

π
(2)
2

= b,
1

π
(1)
3

− 1

π
(2)
3

= −c. (A3)

Proof of Lemma A.1: By using a polar coordinate system, we transform π
(k)
j (j = 1, 2, 3; k = 1, 2) into

(

√
π
(1)
1 ,

√
π
(1)
2 ,

√
π
(1)
3 ) = r1(sinφ1 cosφ2, sinφ1 sinφ2, cosφ1),

(

√
π
(2)
1 ,

√
π
(2)
2 ,

√
π
(2)
3 ) = r2(sinψ1 cosψ2, sinψ1 sinψ2, cosψ1),

where 0 < φ1,φ2,ψ1,ψ2 < π/2 to ensure π(k)j (j = 1, 2, 3; k = 1, 2) satisfy (A2). It follows from (A3) and double-angular
formulas that we have

r21(1 − ω1)(1 + ω2)− r22(1 − ω3)(1 + ω4)

= −ar21r
2
2

4
(1 − ω1)(1 + ω2)(1 − ω3)(1 + ω4), (A4)
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r21(1 − ω1)(1 − ω2)− r22(1 − ω3)(1 − ω4)

= −br21r
2
2

4
(1 − ω1)(1 − ω2)(1 − ω3)(1 − ω4), (A5)

r21(1 + ω1)− r22(1 + ω3) = cr21r
2
2

2
(1 + ω1)(1 + ω3), (A6)

where ω1 = cos 2φ1,ω2 = cos 2φ2,ω3 = cos 2ψ1, and ω4 = cos 2ψ2. Setting ω2 = ω4 and Equations (A4) and (A5) yield

r21(1 − ω1)− r22(1 − ω3) = −ar21r
2
2

4
(1 − ω1)(1 + ω2)(1 − ω3),

r21(1 − ω1)− r22(1 − ω3) = −br21r
2
2

4
(1 − ω1)(1 − ω2)(1 − ω3).

Fixing ω2 = 1 − 2a/(a + b) reduces the above equations to the one common equation

r21(1 − ω1)− r22(1 − ω3) = − r21r
2
2ab

2(a + b)
(1 − ω1)(1 − ω3), (A7)

maintaing the condition −1 < ω2 < 1. It remains to show that there exists −1 < ω3 < 1 satisfying (A6) and (A7). Solving the
Equation (A7) with respect to ω1, we have

ω1 = 1 − r22(1 − ω3)

r21 + r21r
2
2ab(1 − ω3)/{2(a + b)} . (A8)

Substituting (A8) into (A6) leads to the following quadratic equation with respect to ω3:

f (ω3) =
(
r21r

4
2ab + cr41r

4
2ab

2(a + b)
− cr21r

4
2

2

)
ω2
3 −

(
r41r

2
2ab

a + b
+ cr41r

2
2

)
ω3

+
(
r21r

2
2ab

(
2r21 − r22 − cr21r

2
2
)

2(a + b)
+ cr21r

4
2

2
+ 2r41 − 2r21r

2
2 − cr1 − 4r22

)
= 0.

It follows from (A1) that

f (1) = r21
(
2r21 − 2r22 − 2cr21r

2
2
)
< 0, f (−1) = 2r21

(
r21 − r22 + r21r

2
2ab

a + b

)
> 0,

which implies that there is at least one solution of ω3 to the equation f (ω3) = 0 in the open interval (−1, 1). �

Finally, we prove Theorem 3.4 with the help of Lemma A.1.

Proof of Theorem 3.4: Without loss of generality, we set the value of u to be a fixed vector because the following proof holds
for each u. Let the categorical variables y and z take values in {1, 2, . . . , p} and {1, 2, . . . , q}, respectively. We show that model
identifiability implies the completeness condition (C2) by individually addressing three cases: (i) p = 2, (ii) p = 3, and (iii)
p ≥ 4 because ‘if’ part has been already established by Lemma 3.2.

When p = 2, condition (C1) results in the rank of a q × 2 matrix, composed of p(y = j | δ = 1, z = i) in its (i, j)th element
(i = 1, 2; j = 1 . . . , q), being 2. Hence, identifiable models always satisfy the completeness condition (C2).

For cases where p ≥ 3, we must show that the model becomes unidentifiable when the completeness condition is violated.
The breach of the completeness condition indicates the existence of a non-zero vector (h1, . . . , hp) such that for z = 1, . . . , q,
we have

E[hy | δ = 1, z] =
p∑

y=1
hyp(y | δ = 1, z) = 0. (A9)

The elements in (h1, . . . , hp) do not all share the same sign, andmultiplying this vector by any constant does not affect the above
equation. Recall that the model’s unidentifiability implies that π(1)y �= π

(2)
y exists for some y ∈ {1, . . . , p}, satisfying∑p

y=1 p(y |
δ = 1, z)/π(1)y = ∑p

y=1 p(y | δ = 1, z)/π(2)y . We now construct an unidentifiable model when the completeness condition is
violated.

When p = 3, without loss of generality, we assume h1 > 0, h2 > 0, and h3 < 0 satisfying the condition
∑3

y=1 hyp(y | δ =
1, z) = 0 for all z ∈ {1, . . . , q}. Employing Lemma A.1 with a = h1, b = h2, c = −h3, and r1 = r2 = 1, we derive:

1

π
(1)
1

− 1

π
(2)
1

= h1,
1

π
(1)
2

− 1

π
(2)
2

= h2,
1

π
(1)
3

− 1

π
(2)
3

= h3,

where
∑3

j=1 π
(1)
j = ∑3

j=1 π
(2)
j = 1. Substituting h1, h2, and h3 into

∑3
y=1 hyp(y | δ = 1, z) = 0 shows that the model is

unidentifiable.
Lastly, we consider the case of p ≥ 4. Suppose hy (y = 1, . . . , p) satisfies (A9). Within (h1, . . . , hp), we select three elements

with signs as positive, positive, and negative, respectively, and define them as a, b, and −c where a, b, c> 0, and λ is set to be
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sufficiently large to ensure that

λ > 2max
{
a + b
ab

,
1
c

}
. (A10)

For ease of notation, we denote (h1, . . . , hp) = (h1, . . . , hp−3, a, b,−c). The remaining part of the proof is similar when the
combination of the signs is negative, negative, and positive. With the selected λ, 0 < π

(k)
y < 1 (y = 1, . . . , p − 3; k = 1, 2) are

determined to be sufficiently small to satisfy⎛
⎝1 −

p−3∑
y=1

π(1)y

⎞
⎠
⎛
⎝1 −

p−3∑
y=1

π(2)y

⎞
⎠ ≥ 1

2
,

p−3∑
y=1

π(1)y < 1,
p−3∑
y=1

π(2)y < 1,

1

π
(1)
y

− 1

π
(2)
y

= λhy, for y = 1, . . . , p − 3.

(A11)

Furthermore, we define r1 and r2 as

r21 = 1 −
p−3∑
y=1

π(1)y , r22 = 1 −
p−3∑
y=1

π(2)y . (A12)

By determining the variables through these steps, it follows from (A10)–(A12) that condition (A1) with a = λa, b = λb, and
c = λc is fulfilled:

r21 − r22
r21r

2
2

≤ 2(r21 − r22) ≤ 2
c
c < (λc),

− (λa)(λb)
(λa)+ (λb)

< − ab
a + b

2(a + b)
ab

= −2r21r
2
2

1
r21r

2
2

≤ − 1
r21r

2
2
<

r21 − r22
r21r

2
2

.

Therefore, by applying Lemma A.1, we demonstrate that there exist π(k)p−2, π
(k)
p−1, and π

(k)
p (k = 1, 2) such that

p∑
y=p−2

π(1)y = r21,
p∑

y=p−2
π(2)y = r22,

1

π
(1)
p−2

− 1

π
(2)
p−2

= λa,
1

π
(1)
p−1

− 1

π
(2)
p−1

= λb,
1

π
(1)
p

− 1

π
(2)
p

= −λc.

The condition (A9) suggests that the constructed π(k)y (y = 1, . . . , p; k = 1, 2) satisfy
∑p

y=1 π
(k)
y = 1 for k = 1, 2 and, for any

z ∈ {1, . . . , q},
p∑

y=1

(
1

π
(1)
y

− 1

π
(2)
y

)
p(y | δ = 1, z) = λ

p∑
y=1

hyp(y | δ = 1, z) = 0.

Therefore, the model is unidentifiable. �

Proof of Theorem 3.5: We consider when y is continuous because when y is discrete, we just need to change the integral to
summation. To simplify the discussion, we consider the case where Sy = R. Let u be a fixed value. Because h and g are injective
functions, it is sufficient to prove the case where α := h(u;α) and β := g(u;β). Therefore, our goal is to prove

p(y | x, δ = 1; γ )∫
p(y | x, δ = 1; γ )�{α + βm(y)}−1 dy

= p(y | x, δ = 1; γ ′)∫
p(y | x, δ = 1; γ ′)�{α′ + β ′m(y)}−1 dy

,

implies α = α′, β = β ′ and γ = γ ′. Integrating both sides of the above equation with respect to y yields the equality of the
denominator. Thus, we have p(y | x, δ = 1; γ ) = p(y | x, δ = 1; γ ′); this implies γ = γ ′ by (C4).

Next, we consider the identification of β . Taking z1 and z2 such that they satisfy (C5), we show that∫
p(y | u, z1, δ = 1; γ )
�{α + βm(y)} dy =

∫
p(y | u, z1, δ = 1; γ )
�{α′ + β ′m(y)} dy, (A13)

∫
p(y | u, z2, δ = 1; γ )
�{α + βm(y)} dy =

∫
p(y | u, z2, δ = 1; γ )
�{α′ + β ′m(y)} dy, (A14)

implies β = β ′. It follows from (A13) and (A14) that∫
K(y;α,α′,β ,β ′)p(y | u, z1, δ = 1; γ ) dy

=
∫

K(y;α,α′,β ,β ′)p(y | u, z2, δ = 1; γ ) dy = 0, (A15)

where K(y;α,α′,β ,β ′) = �−1{α + βm(y)} −�−1{α′ + β ′m(y)}. It remains to show that (A15) implies β = β ′ in the follow-
ing two steps:
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Step I. We prove that the function K(y;α,α′,β ,β ′) has a single change of sign when β �= β ′. Assume that β �= β ′. The
equation K(y;α,α′,β ,β ′) = 0 has only one solution y∗ ∈ Sy satisfying m(y∗) = (α − α′)/(β ′ − β) because of the injectivity
of the functionm(·) and�(·). This implies K(y) has a single change of sign.

Step II.We prove that the Equation (A15) does not hold when β = β ′.Without loss of generality, by Step I, we consider a case
whereK(y;α,α′,β ,β ′) < 0 (y < y∗) andK(y;α,α′,β ,β ′) > 0 (y > y∗), and p(y | u, z2, δ = 1)/p(y | u, z1, δ = 1) is monotone
increasing. Let c be the upper bound of the density ratio

c := sup
y<y∗

p(y | u, z2, δ = 1)
p(y | u, z1, δ = 1)

.

By a property on K(y;α,α′,β ,β ′) shown in (A15), we have

0 =
∫

K(y;α,α′,β ,β ′)p(y | u, z2, δ = 1) dy

=
∫ y∗

−∞
K(y;α,α′,β ,β ′)

p(y | u, z2, δ = 1)
p(y | u, z1, δ = 1)

p(y | u, z1, δ = 1) dy

+
∫ ∞

y∗
K(y;α,α′,β ,β ′)

p(y | u, z2, δ = 1)
p(y | u, z1, δ = 1)

p(y | u, z1, δ = 1) dy

≥
∫ y∗

−∞
cK(y;α,α′,β ,β ′)p(y | u, z1, δ = 1) dy +

∫ ∞

y∗
cK(y;α,α′,β ,β ′)p(y | u, z1, δ = 1) dy

= c
∫

K(y;α,α′,β ,β ′)p(y | u, z1, δ = 1) dy = 0,

where the inequality follows from the definition of c. This results in the density ratio p(y | u, z2, δ = 1)/p(y | u, z1, δ = 1) being
a constant on Sy, hence, p(y | u, z2, δ = 1) = p(y | u, z1, δ = 1) on Sy. This contradicts with (C5), thus β = β ′.

Finally, from the strict monotonicity of� , it follows that the integration∫
p(y | u, z1, δ = 1; γ )
�{α + βm(y)} dy,

is injective with respect to α. Therefore, Equation (A13) implies that α = α′. �

Proof of Proposition 3.8: It follows from the assumption (4) that there existM, C> 0 such that∫
p(y | x, δ = 1; γ )

�{h(u;α)+ g(u;β)m(y)} dy

∝
∫ ∞

−∞
exp

{
−1
2
(y − h(u;α)− βμ(x, κ))2

β2σ 2

}
1

�(y) exp(|y|s) exp(|y|
s) dy

≤
∫ −M

−∞
exp

{
−1
2
(y − h(u;α)− βμ(x, κ))2

β2σ 2

}
C exp(|y|s) dy + C < ∞,

where 0< s< 2. The first and the second terms of the last equation hold by the condition (4) and the increasing assumption of
� , respectively. �
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