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ABSTRACT
We introduce a new Python package glabcmcmc, which implements
anapproximateBayesian computationMarkov chainMonteCarlo (ABC-
MCMC) algorithm that combines global and local proposal strategies to
address the limitations of standard ABC-MCMC. The proposed package
includes key innovations such as the determination of global proposal
frequencies, the implementationof ahybridABC-MCMCalgorithm inte-
grating global and local proposals, and an adaptive version that uti-
lizes normalizing flows andgradient-based computations for enhanced
proposal mechanisms. The functionality of the software package is
demonstrated through illustrative examples.
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1. Introduction

Approximate Bayesian Computation (ABC) (Beaumont et al., 2002; Pritchard et al., 1999) is a
likelihood-free inference method for posterior approximation when the likelihood function
is intractable but sampling from the model is possible.

Numerous software packages are available for ABC inference: the R package abc (Csil-
léry et al., 2012) implements the ABC rejection algorithm and provides various regres-
sion post-processing methods. The R package EasyABC (Easy, 2013) offers multiple ABC
algorithms, including five sequential sampling schemes and three schemes coupled with
MCMC. ABCtoolbox (Wegmann et al., 2010) runs on both Linux and Windows plat-
forms and is specialized forABCanalysis of geneticmodels. In addition,EP-ABC (Barthelmé
& Chopin, 2014) is a MATLAB toolbox for ABC analysis of state-space models and related
models, and ABC-SDE (Picchini, 2014) is another MATLAB toolbox focussed on stochastic
differential equations. ABC-SysBio (Liepe et al., 2010) includes Python scripts for ABC
analysis in systems biology, and the R package abcrf (Raynal et al., 2019) is designed to
implement ABC random forests for Bayesian parameter inference. The R package ejMCMC
(Cao et al., 2024b) utilizes a Gaussian process model to early reject some candidate param-
eters, thereby accelerating ABC-MCMC inference. These packages or standalone software
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tools are specifically designed for conducting ABC inference, targeting either a broad spec-
trum or particular types of model. They generally employ rejection sampling algorithms or
MCMCmoves with simple proposal distributions.

In contrast, our Python package introduces an innovative approach, utilizing ABC-
MCMC with global-local proposal algorithms (GL-ABC-MCMC) described in Cao
et al. (2024a). The package provides a unified framework for performing likelihood-free
Bayesian inference by combining global and local proposal strategies to improve sampling
efficiency, and can be applied to parameter inference across various models. It offers a vari-
ety of GL-ABC-MCMC sampling methods, including the usage of a distribution directly as a
proposal, employing iterative sampling importance resampling (iSIR) to construct the global
proposal, utilizing the gradient-based Metropolis-Adjusted Langevin algorithm (MALA) as
a local proposal, and enhancing the global proposal with normalizing flows. Additionally,
the package provides functionality to evaluate the expected square jump distance (ESJD), a
criterion used to select appropriate hyperparameters.

2. Review of global-local ABC-MCMC

The basic ABC algorithm for posterior inference p(θ |y) is the rejection sampling. MCMC
methods are commonly used in ABC inference; however, their inherent proposal mecha-
nisms often cause them to get stuck in local regions, impacting the algorithm’s convergence
speed. This paper presents an implementation package for a more efficient algorithm, the
GL-ABC-MCMC algorithm. In each iteration of the MCMC process, the algorithm selects a
global proposal with a probability of γ , otherwise opting for a local proposal. This approach
balances the exploration capability of the global proposal with the exploitation capabil-
ity of the local proposal. When γ is set to 0 or 1, the algorithm reduces to the standard
ABC-MCMC, making it more versatile. Regarding the local proposals, users can use a Gaus-
sian proposal, or they can opt for an adaptive version, that is, the Metropolis-Adjusted
Langevin algorithm (MALA) based on gradient calculations. For global proposals, there are
two options: users can choose a specific distribution, or construct global proposals using iSIR.
Additionally, normalizing flows can be employed to improve the global proposals.

3. Key features

You can install glabcmcmc using pip:

git clone https://github.com/caofff/GL-ABC-MCMC
cd GL-ABC-MCMC
pip install -e .

3.1. Core components

The package offers four implementations of the GL-ABC-MCMC algorithm.

(1) GlobalMCMC: This combines parametric global and local proposal distributions.
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(2) GLMCMC: The global proposal of GlobalMCMC is replaced with one constructed
using iSIR.

(3) GLMALA: This version uses MALA as the local proposal in the GLMCMC algorithm.
(4) GLMCMC-NFs: Building upon GLMCMC, this implementation utilizes normalizing

flows to enhance the global proposal distribution.

And theMCMCRunner class provides a unified interface for all MCMCmethods.We can
define a ‘runner’ by inputting the ABC model set and the directory where posterior samples
are stored.

1 runner = MCMCRunner(
2 abc_set, # Problem-specific ABC set
3 output_dir=’./’ # Output directory and the default is
4 # the current directory.
5 )

Before conducting Bayesian inference, it is essential to define several model functions.
These include the function for generating simulated data based on parameters, the discrep-
ancy function, the kernel function, and the prior function. The implementation of these
components can be effectively managed using the ABCset interface, structured as follows.

1 class ABCSet:
2 def __init__(self, epsilon):
3 self.epsilon = epsilon
4 self.theta_dim = theta_dim
5 self.y = y_obs
6 def generate_samples(self, theta):
7 """Generate synthetic samples for
8 parameters theta."""
9 pass
10 def discrepancy(self, x):
11 """Compute discrepancy between simulated and
12 observed data."""
13 pass
14 def calculate_log_kernel(self, x):
15 """Compute log of ABC kernel."""
16 pass
17 def prior_log_prob(self, theta):
18 """Compute log prior probability."""
19 pass
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For precise implementation details, Example/Mixabs.py is recommended.
Then, we can invoke four different ABC-MCMC with global and local methods through

‘runner.∗()’. The specific operations are as follows.

(1) GlobalMCMC:

1 runner.run_global_mcmc(
2 num_iterations, # Number of iterations
3 initial_theta, # Initial parameters
4 initial_y, # Initial synthetic data
5 global_frequency, # Global frequency
6 local_proposal, # Local proposal
7 global_proposal, # Global proposal
8 output_file = ’global_mcmc_results.csv’
9 # Output file, default is ‘global_mcmc_results.csv’.
10 )

(2) GLMCMC:

1 runner.run_glmcmc(num_iterations, initial_theta,
2 initial_y, global_frequency, local_proposal,
3 importance_proposal, # Importance proposal of iSIR
4 batch_size, # Batch_size of iSIR.
5 output_file=’glmcmc_results.csv’
6 )

(3) GLMALA:

1 runner.run_glmala(num_iterations, initial_theta,
2 initial_y, global_frequency, importance_proposal,
3 batch_size, tau, # Step-size of MALA
4 num_grad, # Simulation number used for
5 # calculating gradients.
6 output_file=’glmala_results.csv’
7 )
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(4) GLMCMC-NF:

1 runner.run_glmcmc_nf(num_iterations, initial_theta,
2 initial_y, global_frequency, local_proposal,
3 batch_size, importance_proposal_base,
4 # The initial importance proposal of iSIR
5 step_size,
6 #The frequency of updating the importance proposal.
7 train_steps,
8 #The total times of updating the importance proposal.
9 output_file=’glmcmc_nf_results.csv’
10 )

Proposal distributions like ‘local_proposal’, ‘global_propoal’, and ‘importance_proposal’
are classes that include the ‘forward’ function and the ‘log_prob’ function. These pro-
posal distributions can be accessed from the glabcmcmc.distribution mod-
ule in the Python package. ‘importance_proposal_base’ needs to be chosen from
normflows.distributions.basemodule.

3.2. Output

The generated Markov chain data will be returned and stored in ‘output_dir/output_file’, a
CSV-formatted file, to facilitate subsequent processing and analysis of the results. Addition-
ally, the posterior mean, variance, 95% credible interval, and effective sample size for each
parameter will be displayed.

4. Example

Here we provide an example of utilizing functions of the glabcmcmc package to perform
ABC inference. Specifically, we use a mixture model with four Gaussian peaks. The follow-
ing codes illustrate the implementation of four different MCMC methods, the optimization
of hyperparameters, and print the output of the GLMCMC approach. We also present the
visualization of the GLMCMC results.

‘Mixture_set()’ is an ABCset interface that contains the key functions of the ABC model.
Regarding ABCset, users can define it based on the format of ‘Mixture_set()’ according to
target model.

1 from glabcmcmc import MCMCRunner
2 import glabcmcmc.distribution as distribution
3 from Mixture import Mixture_set
4 # Define ABC model set
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5 Model = Mixture_set(epsilon=0.05)
6 theta0 = torch.tensor([0.0, 0.0])
7 # Set a random seed at the beginning to
8 # ensure the reproducibility of our results.
9 torch.manual_seed(0)
10 np.random.seed(0)
11 y0 = Model.generate_samples(theta0)
12 runner = MCMCRunner(Model, output_dir=’./’)

Next, we present a practical example of hyperparameter selection. In this example, all other
hyperparameters of ‘runner.run_glmcmc()’ are constant, and optimization is performed
solely on the global frequency parameter. The ‘lp’ refers to local proposal. The candidate
parameter θ∗ = θold + z, where θold is the current state of Markov chain and z is a random
sample from local proposal ‘lp’. The ‘ip’ refers to the importance proposal of iSIR. ‘esjd()’
computes the ESJD of a Markov chain. The selection of the optimal value for this parame-
ter is guided by the rESJD (relative version of ESJD) criterion (Cao et al., 2024a) with fixed
computational budgets.

1 from glabcmcmc import esjd
2 import numpy as np
3 import time
4 # Local proposal: theta_old + z, z~N((0,0),(0.35^2,0.35^2))
5 lp = distribution.DiagGaussian(2, loc=torch.zeros(1, 2),
6 log_scale=torch.log(torch.tensor([0.35, 0.35])))
7 # Importance proposal of iSIR
8 ip = distribution.DiagGaussian(2, torch.tensor([0.0, 0.0]),
9 torch.tensor([0.0, 0.0]))
10 seeds = np.linspace(1, 10, num=10)
11 batch_size = 5
12 global_frequencies = np.linspace(0, 1, num=11)
13 id = list(range(len(global_frequencies)))
14 resjd_value = [[0 for _ in id] for _ in range(len(seeds))]
15 num_ite2 = 1000
16 for i in range(len(seeds)):
17 torch.manual_seed(seeds[i])
18 for j in id:
19 gf = global_frequencies[j]
20 start_time = time.time()
21 chain = runner.run_glmcmc(num_ite2, theta0, y0, gf,
22 lp, ip, batch_size, output_file=None)
23 end_time = time.time()
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24 time_mean =(end_time - start_time)/num_ite2
25 resjd_value[i][j] = esjd(chain)/time_mean
26 resjd_mean = np.mean(resjd_value,axis=0)
27 best_gf = global_frequencies[np.argmax(resjd_mean)]
28 print(f"The best global frequency: {best_gf}")

The output is

The best global frequency: 0.9

For scenarios involving the optimization of multiple hyperparameters, a similar method-
ology can be employed, either through sequential tuning or joint optimization, to further
enhance the model’s overall performance.

Subsequently, the program is executed using the selected hyperparameter values.

1 chain_glmcmc = runner.run_glmcmc(1000000, theta0, y0, 0.9,
2 lp, ip, 5)

Running this function will print information including the posterior mean, variance, and
the 95% credible interval. Additional information can be obtained by directly manipulating
the returned value, ‘chain_glmcmc’, or by processing theMarkov chain data saved in the ‘.csv’
file. When we run multiple MCMC chains, there might exist slight differences among differ-
ent chains due to the intrinsic randomness. Here, we set a random seed prior to executing
the MCMC chain to ensure the reproducibility of the results.

Theta_Re 1:
Mean: -0.0017
Variance: 2.0824
95% Confidence Interval: (tensor(-2.8301), tensor(2.8268))
Theta_Re 2:
Mean: -0.0259
Variance: 2.0957
95% Confidence Interval: (tensor(-2.8632), tensor(2.8115))
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Figure 1. Trace plots (left) and posterior density contour (right) estimated by GLMCMC. The red dots and
their size represent location and number of particles, and the grey lines depict the movement trajectories.

We visualize the posterior samples. Figure 1 displays part of the trace plots (left) (i.e.,
iteration 30001 ∼ 40000) and the posterior density contour (right) estimated by GLMCMC.

For other GL-ABC-MCMC methods, the following code provides an example. The out-
puts of these functions are similar to that of ‘runner.run_glmcmc()’. In the method of
updating the proposal distribution using normalizing flows, the initial proposal distribution
should be selected from the normflows.distribution.basemodule.

1 gp = distribution.DiagGaussian(2, torch.tensor([0.0, 0.0]),
2 torch.tensor([0.0, 0.0]))
3 chain_global = runner.run_global_mcmc(num_ite, theta0, y0,
4 0.5, lp, gp)
5 chain_glmala =runner.run_glmala(num_ite, theta0, y0, 0.8,
6 ip, 5, 0.3, 100)
7 import normflows as nf
8 gp_base = nf.distributions.base.DiagGaussian(2)
9 chain_glmcmc_nf =runner.run_glmcmc_nf(num_ite, 0.5, lp, 5,
10 gp_base, 200, 50)

In addition, we infer the mixture of Gaussian posterior using ‘ABC_mcmc’ function of
the R package EasyABC (Easy, 2013). This function implements the ordinary ABC-MCMC
algorithm (Marjoram et al., 2003; Wegmann et al., 2009). We ensure that the length of the
MCMC chain is consistent with our algorithm. The visualization of the posterior samples is
shown in Figure 2. The results demonstrate that for multimodal posterior distributions, our
algorithm exhibits superior inference performance. It effectively navigates the entire poste-
rior space rather than becoming confined to a local region. Furthermore, our algorithm can
also implement ordinary ABC-MCMC by setting the global frequency to zero.
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Figure 2. Trace plots (left) andposterior density contour (right) estimatedby ‘ABC_mcmc’ from theRpack-
age EasyABC. The red dots and their size represent location and number of particles, and the grey lines
depict the movement trajectories.

5. Conclusion

In this paper, we presented the glabcmcmc Python package, which implements a novel
ABC-MCMC approach by integrating global and local proposal strategies. This innovative
framework addresses the limitations commonly faced by traditional ABC-MCMCmethods,
particularly the challenges of slow convergence and entrapment in local regions. The package
provides a comprehensive framework for the GL-ABC-MCMC algorithm, allowing users to
flexibly call upon different sampling methods according to their specific goals andmodelling
needs.
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