[1] ZADORIN A S, RONDELEZ Y, GINES G, et al. Synthesis and materialization of a reaction-diffusion French flag pattern[J]. Nature Chemistry, 2017, 9(10):990-996.
[2] 李新政, 白占国, 李燕, 等. 双层非线性耦合反应扩散系统中复杂Turing斑图[J]. 物理学报, 2013, 62(22):45-51.
[3] ZHAO H Y, HUANG X X, ZHANG X B. Turing instability and pattern formation of neural networks with reaction-diffusion terms[J]. Nonlinear Dynamics, 2014, 76(1):115-124.
[4] SONG Y L, YANG R, SUN G Q. Pattern dynamics in a Gierer-Meinhardt model with a saturating term[J]. Applied Mathematical Modelling, 2017, 46:476-491.
[5] SUN G Q. Mathematical modeling of population dynamics with Allee effect[J]. Nonlinear Dynamics, 2016, 85(1):1-12.
[6] WANG X L, WANG W D, ZHANG G H. Vegetation pattern formation of a water-biomass model[J]. Commun Nonlinear Sci Numer Simulat, 2017, 42:571-584.
[7] 张道祥, 赵李鲜, 孙光讯, 等. 一类带负交叉扩散项二维系统的空间Turing斑图[J]. 吉林大学学报(理学版), 2017, 55(3):537-546.
[8] SUN G Q, WANG C H, WU Z Y. Pattern dynamics of aGierer-Meinhardt model with spatial effects. Nonlinear Dynamics,2017, 88(2):1385-1396.
[9] GUIN L N. Existence of spatial patterns in a predator-preymodel with self-and cross-diffusion. Applied Mathematics andComputation, 2014, 226:320-335.
[10] 张道祥, 赵李鲜, 胡伟.一类三种群食物链模型中交错扩散引起的Turing不稳定.山东大学学报(理学版), 2017, 52(1):88-97.
[11] SAMBATH M, BALACHANRAN K, SUVINTHRA M. Stability and Hopfbifurcation of a diffusive predator-prey model with hyperbolicmortality. Complexity, 2016, 21:34-43.
[12] XIAO M, CAO J D. Hopf bifurcation and non-hyperbolic equilibrium ina ratio-dependent predator-prey model with linear harvesting rate:Analysis and computation. Mathematical and Computer Modelling,2009, 50:360-379.
[13] ZHANG F R, LI Y. Stability and Hopf bifurcation of adelayed-diffusive predator-prey model with hyperbolic mortality andnonlinear prey harvesting. Nonlinear Dynamics, 2017, 88(2):1397-1412.
[14] LI Y. Dynamics of a delayed diffusive predator-prey modelwith hyperbolic mortality. Nonlinear Dynamics, 2016, 85(4):2425-2436.
[15] 欧阳颀. 非线性科学与斑图动力学导论. 北京:北京大学出版社, 2010.
[16] KUZNETSOV Y A. Elements of applied bifurcation theory. 2nd ed. New York:Springer, 1995. |