对于
$ M(a, b) =\frac{a-b}{2{\rm arcsinh}\big[(a-b)/(a+b)\big]}, $ | (1) |
其中
设
$ \overline{H}(a, b) <H(a, b)< G(a, b)<L(a, b)<P(a, b)<A(a, b) \\ <M(a, b)<T(a, b)<E(a, b)<Q(a, b)<C(a, b)<D(a, b), $ | (2) |
对所有
近年来, Neuman-Sándor平均和其他二元平均得到了深入的研究.特别地, 从有关Neuman-Sándor平均与其他二元平均和它们的各类组合比较中发现了许多重要不等式, 参见文献[2-6].
$ A(a, b) <M(a, b)<\frac{A(a, b)}{\ln(1+\sqrt{2})}, \frac{\pi}{4}T(a, b)<M(a, b)<T(a, b), \\ M(a, b)<\frac{A^{2}(a, b)}{P(a, b)}, M(a, b)<\frac{2A(a, b)+Q(a, b)}{3}, \\ \sqrt{A(a, b)T(a, b)}<M(a, b)<\sqrt{\frac{A^{2}(a, b)+T^{2}(a, b)}{2}}, $ | (3) |
对所有
在文献[8]中, Neuman证明了不等式
$ \alpha Q(a, b)+(1-\alpha)A(a, b) <M(a, b) <\beta Q(a, b)+(1-\beta)A(a, b), \\ \lambda C(a, b)+(1-\lambda)A(a, b)<M(a, b)<\mu C(a, b)+(1-\mu)A(a, b) $ | (4) |
对所有
赵铁洪等[9]发现了最佳参数
$ \alpha_{1} H(a, b)+(1-\alpha_{1})Q(a, b)<M(a, b)<\beta_{1} H(a, b)+(1-\beta_{1})Q(a, b), \\ \alpha_{2} G(a, b)+(1-\alpha_{2})Q(a, b)<M(a, b)<\beta_{2} G(a, b)+(1-\beta_{2})Q(a, b), \\ \alpha_{3} H(a, b)+(1-\alpha_{3})C(a, b)<M(a, b)<\beta_{3} H(a, b)+(1-\beta_{3})C(a, b) $ | (5) |
对所有
钱伟茂和禇玉明[10]发现了最大值
$ \alpha_{1} E(a, b)+(1-\alpha_{1})A(a, b)<M(a, b)<\beta_{1} E(a, b)+(1-\beta_{1})A(a, b), \\ E^{\lambda_{1}}(a, b)A^{1-\lambda_{1}}(a, b)<M(a, b)<E^{\mu_{1}}(a, b)A^{1-\mu_{1}}(a, b), \\ \alpha_{2} Q(a, b)+(1-\alpha_{2})\overline{H}(a, b)<M(a, b)<\beta_{2} Q(a, b)+(1-\beta_{2})\overline{H}(a, b), \\ \lambda_{2} C(a, b)+(1-\lambda_{2})\overline{H}(a, b)<M(a, b)<\mu_{2} C(a, b)+(1-\mu_{2})\overline{H}(a, b) $ | (6) |
对所有
在文献[11]中, 作者证明了双边不等式
$ \lambda_{1} D(a, b)+(1-\lambda_{1})A(a, b) <T^*(a, b)<\mu_{1} D(a, b)+(1-\mu_{1})A(a, b), \\ D\big[\lambda_{2}a+(1-\lambda_{2})b, \lambda_{2}b+(1-\lambda_{2})a\big] <T^*(a, b) <D\big[\mu_{2}a+(1-\mu_{2})b, \mu_{2}b+(1-\mu_{2})a\big] $ | (7) |
对所有
在文献[12-13]中作者发现了最佳参数
$ \alpha_{1} D(a, b)+(1-\alpha_{1})A(a, b)<T(a, b)<\beta_{1} D(a, b)+(1-\beta_{1})A(a, b), \\ \alpha_{2} D(a, b)+(1-\alpha_{2})H(a, b)<T(a, b)<\beta_{2} D(a, b)+(1-\beta_{2})H(a, b) $ | (8) |
对所有
杨月英等[14]找到了最大值
$ \alpha_{1} D(a, b)+(1-\alpha_{1})G(a, b)<P(a, b)<\beta_{1} D(a, b)+(1-\beta_{1})G(a, b), \\ \alpha_{2} D(a, b)+(1-\alpha_{2})G(a, b)<T(a, b)<\beta_{2} D(a, b)+(1-\beta_{2})G(a, b) $ | (9) |
对所有
本文的主要结果是找到了最大值
$ \lambda_{1} D(a, b)+(1-\lambda_{1})\overline{H}(a, b)<M(a, b)<\mu_{1} D(a, b)+(1-\mu_{1})\overline{H}(a, b), $ | (10) |
$ \lambda_{2} D(a, b)+(1-\lambda_{2})H(a, b)<M(a, b)<\mu_{2} D(a, b)+(1-\mu_{2})H(a, b) $ | (11) |
对所有
为了证明主要结论, 我们需要以下引理.
引理1.1 设
$ f(x)= (1-p)^2 x^5 + (7p^2-11p+1)x^4+6(2p^2-1)x^3 \\ -2(2p^2-11p+3)x^2+12p(1-p)x-4p^2, $ | (12) |
则下列结论成立.
(1) 若
(2) 若
证明 (1)当
$ f(x)= \frac{1}{441}(x-1)(121x^4-1~048x^3-2~494x^2-920x+400) \\ < \frac{1}{441}(x-1)(121x^4-1~048-2~494-920+400) \\ = -\frac{1}{441}(x-1)(4~062-121x^4)<0, $ | (13) |
所以, 我们从不等式(13)容易证得(1).
(2) 当
$ 7p^2-11p+1 =-2.987~4\cdots<0, $ | (14) |
$ 2p^2-1 =-0.356~3\cdots<0, $ | (15) |
$ 2p^2-11p+3 =-2.596~6\cdots<0, $ | (16) |
$ 27p^2-4p-8 =-1.579~9\cdots<0, $ | (17) |
$ f(1)=21p-10 =1.913~2\cdots>0, $ | (18) |
$ f\big(\sqrt{2}\big) =4(1+\sqrt{2})\big[4p^2+\sqrt{2}(\sqrt{2}-1)p-2\big]=-3.673~3\cdots<0 $ | (19) |
及
$ f'(x)= 5(1-p)^2 x^4 + 4(7p^2-11p+1)x^3+18(2p^2-1)x^2 \\ -4(2p^2-11p+3)x+12p(1-p). $ | (20) |
从不等式(14)-(17)和等式(20), 可知
$ f'(x) < 5(1-p)^2 x^4 + 4(7p^2-11p+1)x^2+18(2p^2-1)x^2\\ -4(2p^2-11p+3)x^2+12p(1-p)x^2\\ = x^2\big[5(1-p)^2 x^2+(44p^2+12p-26)\big]\\ < x^2\big[5(1-p)^2 (\sqrt{2})^2 +(44p^2+12p-26)\big]\\ = 2(27p^2-4p-8)x^2 <0 $ | (21) |
对所有
引理1.2 设
$ g(x)= (1-p)^2 x^7 - p(1-p)x^6-(3p+4)(1-p)x^5+(3p^2-2p-4)x^4 \\ +6px^3+12px^2+4p(1-p)x-4p^2, $ | (22) |
则下列结论成立.
(1) 若
(2) 若
证明 (1)当
$ g(x)= \frac{1}{324}(x-1)(121x^6+44x^5-979x^4-2~380x^3-1624x^2-112x+196) \\ <\frac{1}{324}(x-1)(121x^6+44x^6-979x-2~380x-1~624x-112x+196x^6) \\ = -\frac{1}{324}x(x-1)(5~095-361x^5)<0, $ | (23) |
所以, 由不等式(23)容易证得(1).
(2) 当
$ 3p^2-2p-4 =-4.169~1\cdots<0, $ | (24) |
$ 4p^2+\sqrt{2}p-2\sqrt{2} =-0.738~8\cdots<0, $ | (25) |
$ 57p^2-19p-8 =-0.434~5\cdots <0, $ | (26) |
$ g(1) =18p-7=3.211~3\cdots>0, $ | (27) |
$ g(\sqrt{2}) =4(1+\sqrt{2})(4p^2+\sqrt{2}p-2\sqrt{2})=-7.134~9\cdots<0 $ | (28) |
及
$ g'(x)= 7(1-p)^2 x^6 -6 p(1-p)x^5-5(3p+4)(1-p)x^4 \\ +4(3p^2-2p-4)x^3+18px^2+24px+4p(1-p). $ | (29) |
从不等式(24)、(26)和等式(29), 可知
$ g'(x)< 7(1-p)^2 x^6 -6 p(1-p)x^2-5(3p+4)(1-p)x^2 \\ +4(3p^2-2p-4)x^2+18px^2+24px^2+4p(1-p)x^2\\ = x^2\big[7(p^2-2p+1)x^4+(29p^2+37p-36)\big]\\ <x^2\big[7(p^2-2p+1)(\sqrt{2})^4+(29p^2+37p-36)\big]\\ = (57p^2-19p-8)x^2<0 $ | (30) |
对所有
定理2.1 双边不等式
$ \lambda_{1} D(a, b)+(1-\lambda_{1})\overline{H}(a, b)<M(a, b)<\mu_{1} D(a, b)+(1-\mu_{1})\overline{H}(a, b) $ | (31) |
对所有
证明 首先, 我们证明不等式
$ M(a, b)>\frac{10}{21}D(a, b)+\frac{11}{21}\overline{H}(a, b), $ | (32) |
$ M(a, b)<\frac{1}{2\ln(1+\sqrt{2})}D(a, b)+\Big[1-\frac{1}{2\ln(1+\sqrt{2})}\Big]\overline{H}(a, b) $ | (33) |
对所有
根据
$ \frac{M(a, b)}{A(a, b)}=\frac{v}{{\rm arcsinh}(v)}, \frac{D(a, b)}{A(a, b)}=\frac{1+3v^2}{1+v^2}, \frac{\overline{H}(a, b)}{A(a, b)}=\frac{1-v^2}{\sqrt{1+v^2}}. $ | (34) |
我们从等式(34)得到
$ \frac{M(a, b)-\overline{H}(a, b)}{D(a, b)-\overline{H}(a, b)}=\frac{\big[v\sqrt{1+v^2}-(1-v^2){\rm arcsinh}(v)\big]\sqrt{1+v^2}} {\big[(1+3v^2)-(1-v^2)\sqrt{1+v^2}\big]{\rm arcsinh}(v)} $ | (35) |
和
$ \lim\limits_{v\rightarrow 0^{+}}\frac{\big[v\sqrt{1+v^2}-(1-v^2){\rm arcsinh}(v)\big]\sqrt{1+v^2}}{\big[(1+3v^2)-(1-v^2)\sqrt{1+v^2}\big]{\rm arcsinh}(v)}=\frac{10}{21}, $ | (36) |
$ \lim\limits_{v\rightarrow 1^{-}}\frac{\big[v\sqrt{1+v^2}-(1-v^2){\rm arcsinh}(v)\big]\sqrt{1+v^2}} {\big[(1+3v^2)-(1-v^2)\sqrt{1+v^2}\big]{\rm arcsinh}(v)}=\frac{1}{2\ln(1+\sqrt{2})}, $ | (37) |
$ M(a, b)-\big[pD(a, b)+(1-p)\overline{H}(a, b)\big] \\ =A(a, b)\bigg\{\frac{v}{{\rm arcsinh}(v)}-\Big[p\Big(\frac{1+3v^2} {1+v^2}\Big)+(1-p)\Big(\frac{1-v^2}{\sqrt{1+v^2}}\Big)\Big]\bigg\} \\ =\frac{A(a, b)\big[p(1+3v^2)+(1-p)(1-v^2)\sqrt{1+v^2} \big]}{(1+v^2){\rm arcsinh}(v)}F(x), $ | (35) |
其中
$ F(x)=\frac{x^2\sqrt{x^2-1}}{(p-1)x^3+3px^2+2(1-p)x-2p}-{\rm arcsinh}\big(\sqrt{x^2-1}\big). $ | (39) |
经简单计算得
$ F(1) =0, $ | (40) |
$ F(\sqrt{2}) =\frac{1}{2p}-\ln(1+\sqrt{2}), $ | (41) |
$ F'(x) =-\frac{(x-1)}{\sqrt{x^2-1}\big[(p-1)x^3+3px^2+2(1-p)x-2p\big]^2}f(x), $ | (42) |
其中函数
现在, 我们分两种情形证明.
情形1 当
情形2 当
$ F(\sqrt{2})=0, $ | (43) |
所以, 不等式(33)可从等式(38)-(40)和(43)及函数
•若
$ M(a, b) <pD(a, b)+(1-p)\overline{H}(a, b) $ |
对所有
•若
$ M(a, b)>pD(a, b)+(1-p)\overline{H}(a, b) $ |
对所有
定理2.2 双边不等式
$ \lambda_{2} D(a, b)+(1-\lambda_{2})H(a, b) <M(a, b) <\mu_{2} D(a, b)+(1-\mu_{2})H(a, b) $ | (44) |
对所有
证明 首先, 我们证明不等式
$ M(a, b)>\frac{7}{18}D(a, b)+\frac{11}{18}H(a, b), $ | (45) |
$ M(a, b) <\frac{1}{2\ln(1+\sqrt{2})}D(a, b)+ \Big[1-\frac{1}{2\ln(1+\sqrt{2})}\Big]H(a, b) $ | (46) |
对所有
根据
$ \frac{M(a, b)}{A(a, b)}=\frac{v}{{\rm arcsinh}(v)}, \frac{D(a, b)}{A(a, b)}=\frac{1+3v^2}{1+v^2}, \frac{H(a, b)}{A(a, b)}=1-v^2. $ | (47) |
从等式(47)得到
$ \frac{M(a, b)-H(a, b)}{D(a, b)-H(a, b)}=\frac{(1+v^2)\big[v-(1-v^2){\rm arcsinh}(v)\big]}{v^2(v^2+3){\rm arcsinh}(v)} $ | (48) |
和
$ \lim\limits_{v\rightarrow 0^{+}}\frac{(1+v^2)\big[v-(1-v^2){\rm arcsinh}(v)\big]}{v^2(v^2+3){\rm arcsinh}(v)}=\frac{7}{18}, $ | (49) |
$ \lim\limits_{v\rightarrow 1^{-}}\frac{(1+v^2)\big[v-(1-v^2){\rm arcsinh}(v)\big]}{v^2(v^2+3){\rm arcsinh}(v)}=\frac{1}{2\ln(1+\sqrt{2})}, $ | (50) |
$ M(a, b)-\big[pD(a, b)+(1-p)H(a, b)\big] \\ =A(a, b)\bigg\{\frac{v}{{\rm arcsinh}(v)}-\Big[p\Big(\frac{1+3v^2}{1+v^2}\Big)+(1-p)(1-v^2)\Big]\bigg\} \\ =\frac{A(a, b)\big[p(1+3v^2)+(1-p)(1-v^4)\big]}{(1+v^2){\rm arcsinh}(v)}G(x), $ | (51) |
其中
$ G(x)=\frac{x^2\sqrt{x^2-1}}{(p-1)x^4+(p+2)x^2-2p}-{\rm arcsinh}\big(\sqrt{x^2-1}\big). $ | (52) |
经简单计算得
$ G(1) =0, $ | (53) |
$ G(\sqrt{2}) =\frac{1}{2p}-\ln(1+\sqrt{2}), $ | (54) |
$ G'(x) =-\frac{(x-1)}{\sqrt{x^2-1}\big[(p-1)x^4+(p+2)x^2-2p\big]^2}g(x) $ | (55) |
其中函数
现在, 我们分两种情形证明.
情形1 当
情形2 当
$ G(\sqrt{2})=0, $ | (56) |
所以, 不等式(46)可从等式(51)-(53)和(56)以及函数
•若
$ M(a, b) <pD(a, b)+(1-p)H(a, b) $ |
对所有
•若
$ M(a, b)>pD(a, b)+(1-p)H(a, b) $ |
对所有
[1] | NEUMAN E, SÁNDOR J. On the Schwab-Borchardt mean[J]. Mathematica Pannonica, 2003, 14(2): 253-266. |
[2] | LI Y M, LONG B Y, CHU Y M. Sharp bounds for the Neuman-Sándor mean in terms of generalized logarithmic mean[J]. Journal of Mathematical Inequalities, 2012, 6(4): 567-577. |
[3] | CHU Y M, LONG B Y, GONG W M, et al. Sharp bounds for Seiffert and Neuman-Sándor means in terms of generalized logarithmic means[J]. Journal of Inequalities and Applications, 2013, 2013: 10 DOI:10.1186/1029-242X-2013-10 |
[4] | CHU Y M, LONG B Y. Bounds of the Neuman-Sándor mean using power and identric means[J]. Abstract and Applied Analysis, 2013, 6pages. |
[5] | ZHAO T H, CHU Y M, JIANG Y L, et al. Best possible bounds for Neuman-Sándor mean by the identric, quadratic and contraharmonic means[J]. Abstract and Applied Analysis, 2013, 12pages. |
[6] | HE Z Y, QIAN W M, JIANG Y L, et al. Bounds for the combinations of Neuman-Sándor, arithmetic and second Seiffert means in terms of contra-harmonic mean[J]. Abstract and Applied Analysis, 2013, 5pages. |
[7] | NEUMAN E, SÁNDOR J. On the Schwab-Borchardt mean Ⅱ[J]. Mathematica Pannonica, 2006, 17(1): 49-59. |
[8] | NEUMAN E. A note on a certain bivariate mean[J]. Journal of Mathematical Inequalities, 2012, 6(4): 637-643. |
[9] | ZHAO T H, CHU Y M, LIU B Y. Optimal bounds for Neuman-Sándor mean in terms of the convex combinations of harmonic, geometric, quadratic, and contraharmonic means[J]. Abstract and Applied Analysis, 2012, 9pages. |
[10] | QIAN W M, CHU Y M. On certain inequalities for Neuman-Sándor mean[J]. Abstract and Applied Analysis, 2013, 6pages. |
[11] | QIAN W M, SONG Y Q, ZHANG X H, et al. Sharp bounds for Toader mean in terms of arithmetic and second contra-harmonic means[J]. Journal of Function Spaces, 2015, 5pages. |
[12] | 孟祥菊, 刘红, 高红亚. 第二类, Seiffert, 平均的最优凸组合界[J]. 宁夏大学学报(自然科学版), 2012, 33(1): 14-16. |
[13] | 孟祥菊, 王淑燕, 田淑环. 关于第二类, Seiffert, 平均的最佳双边不等式[J]. 数学的实践与认识, 2015, 45(18): 299-302. |
[14] | YANG Y Y, SHEN L C, QIAN W M. The optimal convex combination bounds of second contra-harmonic and geometric mean for the Seiffert means[J]. Pacific Journal of Applied Mathematics, 2016, 7(3): 207-217. |