[1] NEUMAN E, SÁNDOR J. On the Schwab-Borchardt mean[J]. Mathematica Pannonica, 2003, 14(2):253-266.
[2] LI Y M, LONG B Y, CHU Y M. Sharp bounds for the Neuman-Sándor mean in terms of generalized logarithmic mean[J]. Journal of Mathematical Inequalities, 2012, 6(4):567-577.
[3] CHU Y M, LONG B Y, GONG W M, et al. Sharp bounds for Seiffert and Neuman-Sándor means in terms of generalized logarithmic means[J]. Journal of Inequalities and Applications, 2013, 2013:10.
[4] CHU Y M, LONG B Y. Bounds of the Neuman-Sándor mean using power and identric means[J]. Abstract and Applied Analysis, 2013, 6pages.
[5] ZHAO T H, CHU Y M, JIANG Y L, et al. Best possible bounds for Neuman-Sándor mean by the identric, quadratic and contraharmonic means[J]. Abstract and Applied Analysis, 2013, 12pages.
[6] HE Z Y, QIAN W M, JIANG Y L, et al. Bounds for the combinations of Neuman-Sándor, arithmetic and second Seiffert means in terms of contra-harmonic mean[J]. Abstract and Applied Analysis, 2013, 5pages.
[7] NEUMAN E, SÁNDOR J. On the Schwab-Borchardt mean Ⅱ[J]. Mathematica Pannonica, 2006, 17(1):49-59.
[8] NEUMAN E. A note on a certain bivariate mean[J]. Journal of Mathematical Inequalities, 2012, 6(4):637-643.
[9] ZHAO T H, CHU Y M, LIU B Y. Optimal bounds for Neuman-Sándor mean in terms of the convex combinations of harmonic, geometric, quadratic, and contraharmonic means[J]. Abstract and Applied Analysis, 2012, 9pages.
[10] QIAN W M, CHU Y M. On certain inequalities for Neuman-Sándor mean[J]. Abstract and Applied Analysis, 2013, 6pages.
[11] QIAN W M, SONG Y Q, ZHANG X H, et al. Sharp bounds for Toader mean in terms of arithmetic and second contra-harmonic means[J]. Journal of Function Spaces, 2015, 5pages.
[12] 孟祥菊, 刘红, 高红亚. 第二类,Seiffert,平均的最优凸组合界[J]. 宁夏大学学报(自然科学版), 2012, 33(1):14-16.
[13] 孟祥菊, 王淑燕, 田淑环. 关于第二类,Seiffert,平均的最佳双边不等式[J]. 数学的实践与认识, 2015, 45(18):299-302.
[14] YANG Y Y, SHEN L C, QIAN W M. The optimal convex combination bounds of second contra-harmonic and geometric mean for the Seiffert means[J]. Pacific Journal of Applied Mathematics, 2016, 7(3):207-217. |