[ 1 ] DITTRICH J-P, SEEGER B, TAYLOR D S, et al. Progressive merge join: A generic and non-blocking sort-based join algorithm [C]//Proceedings of the 28th VLDB Conference. 2002: 299-310.
[ 2 ] URHAN T, FRANKLIN M J. XJoin: A reactively-scheduled pipelined join operator [J]. IEEE Data Eng Bull, 2000, 23(2): 27-33.
[ 3 ] WANG S, RUNDENSTEINER E. Scalable stream join processing with expensive predicates: Workload distribution and adaptation by time-slicing [C]//Proceedings of the 12th Conference on EDBT. 2009: 299-310.
[ 4 ] GOUNARIS A, TSAMOURA E, MANOLOPOULOS Y. Adaptive query processing in distributed settings [J]. Intelligent Systems Reference Library, 2013, 36: 211-236.
[ 5 ] LIU B, JBANTOVA M, RUNDENSTEINER E A. Optimizing state-intensive non-blocking queries using run-time adaptation [C]//Proceedings of the 2007 IEEE 23rd ICDEW. IEEE, 2007: 614-623.
[ 6 ] PATON N W, BUENABAD-CHAVEZ J, CHEN M, et al. Autonomic query parallelization using non-dedicated computers: An evaluation of adaptivity options [J]. The VLDB Journal, 2009, 18(1): 119-140.
[ 7 ] STAMOS J W, YOUNG H C. A symmetric fragment and replicate algorithm for distributed joins [J]. IEEE Transactions on Parallel & Distributed Systems, 1993, 4(12): 1345-1354.
[ 8 ] EPSTEIN R, STONEBRAKER M, WONG E. Distributed query processing in a relational data base system [C]//Proceedings of ACM SIGMOD Conference on Management of Data. 1978: 169-180.
[ 9 ] OKCAN A, RIEDEWALD M. Processing theta-joins using MapReduce [C]//Proceedings of ACM SIGMOD Conference on Management of Data. 2011: 949-960.
[10] ELSEIDY M, ELGUINDY A. Scalable and adaptive online joins [J]. The VLDB Endowment, 2014, 7(6): 441-452.
[11] GEDIK B. Partitioning functions for stateful data parallelism in stream processing [J]. The VLDB Journal, 2013, 23(4): 517-539.
[12] Apache storm[EB/OL]. [2016-06-10]. http://storm.apache.org.
[13] The TPC-H benchmark[EB/OL]. [2016-06-10]. http://www.tpc.org/tpch. |