[ 1 ] 宁红兵, 陈媛媛, 张鹏. PM2.5污染的研究进展及防治对策[J].广东化工, 2015(5): 13-17.
[ 2 ] FANN N, RISLEY D. The public health context for PM2.5 and ozone air quality trends[J]. Air Quality, Atmosphere and Health, 2013, 6(1): 1-11.
[ 3 ] SCHEERS H, JACOBS L, CASAS L, et al. Long-term exposure to particulate matter air pollution is a risk factor for stroke: Meta-analytical evidence[J]. Stroke: A Journal of Cerebral Circulation, 2015, 46(11): 3058-3066.
[ 4 ] KLOOG I, ZZNOBETTI A, NORDIO F, et al. Effects of airborne fine particles (PM2.5) on deep vein thrombosis admissions in the northeastern United States [J]. Journal of Thrombosis and Haemostasis, 2015, 13(5): 768-774.
[ 5 ] ROSSNER P J., TULUPOVAA E, ROSSNEROVAA A, et al. Reduced gene expression levels after chronic exposure to high concentrations of air pollutants [J]. Mutation Research, 2015, 780: 60-70.
[ 6 ] YANG J, YU Q, GONG P. Quantifying air pollution removal by green roofs in Chicago[J]. Atmospheric Environment, 2008, 42: 7266-7273.
[ 7 ] NOWAK D J, CRANE D E, STEVENS J C. Air pollution removal by urban trees and shrubs in the United States [J]. Urban Forestry & Urban Greening, 2006(4): 115-123.
[ 8 ] PULLMAN M. Conifer PM2.5 deposition and re-suspension in wind and main events[D]. Ithaca: Cornell University, 2009.
[ 9 ] WAGNER P, FURSTNER R, BARTHLOTT W, et al. Quantitative assessment to the structural basis of water repellency in natural and technical surfaces [J]. Journal of Experimental Botany, 2003, 54(385): 1295-1303.
[10] BURTON Z, BHUSHAN B. Surface characterization and adhesion and friction properties of hydrophobic leaf surfaces [J]. Ultramicroscopy, 2006, 106(8/9): 709-719.
[11] PERKINS M C, ROBERTS C J, BRIGGS D, et al. Surface morphology and chemistry of Prunus laurocerasus L. leaves: A study using X-ray photoelectron spectroscopy, time-of-light secondary-ion mass spectrometry, atomicforce microscopy and scanning electron microscopy [J]. Planta, 2005, 221(1): 123-134.
[12] 刘璐, 管东生, 陈永勤. 广州市常见行道树种叶片表面形态[J]. 生态学报, 2013, 33(8): 2604-2614.
[13] 王兵, 王晓燕, 牛香, 等.北京市常见落叶树种叶片滞纳空气颗粒物功能[J]. 环境科学, 2015, 36(6): 2005-2007.
[14] 陈波, 刘海龙, 赵东波, 等.北京西山绿化树种秋季滞纳PM2.5能力及其与叶表面AFM特征的关系[J]. 应用生态学报, 2016, 27(3): 777-784.
[15] 房瑶瑶, 王兵, 牛香. 叶片表面粗糙度对颗粒物滞纳能力及洗脱特征的影响[J]. 水土保持学报, 2015, 29(4): 110-115.
[16] ZHANG W K, WANG B, NIU X. Study on the adsorption capacities for airborne particulates of landscape plants in different polluted regions in Beijing (China)[J]. International Journal of Environmental Research and Public Health, 2015(12): 9623-9638.
[17] 新华社. 我国霾污染具有季节性、地域性特点[EB/OL]. [2016-04-08]. http://www.envir.gov.cn/info/2016/3/39927.htm, 2016-03-09/2016-5-5.
[18] 游文娟, 张庆费, 夏檑. 城市绿化植物叶片结构对光强的响应[J]. 西北林学院学报, 2008, 23(5): 22-25.
[19] 石辉, 王会霞, 李秧秧. 植物叶表面的润湿性及其生态学意义[J]. 生态学报, 2011, 31(15): 4287-4298.
[20] NEINHUIS C, BARTHLOTT W. Seasonal changes of leaf surface contamination in beech, oak and ginkgo in relation to leaf micromorphology and wettability. New Phytologist, 1998, 138(1): 91-98.
[21] HANBA Y T, MORIYA A, KIMURA K. Effect of leaf surface wetness and wettability on photosynthesis in bean and pea [J]. Plant, Cell and Environment, 2004, 27(4): 413-421.
[22] KOCH K, BHUSHAN B, BARTHLOTT W. Multifunctional surface structures of plants: An inspiration for biomimetics [J]. Progress in Materials Science, 2009, 54(2): 137-178.
[23] 玉亚, 石辉. 石墨粉末润湿特性及其表面自由能的研究[J].安全与环境学报, 2007, 7(1): 60-61.
[24] 田军, 薛群基. 涂层表面能色散分量和极性分量对涂层与液体石蜡间润湿性的影响[J]. 石油与天然气化工, 1998, 27(2): 113-114.
[25] 张家洋, 刘兴洋, 邹曼, 等. 37种道路绿化树木滞尘能力的比较[J].云南农业大学学报, 2013, 28 (6): 905-912.
[26] 杨佳, 王会霞, 谢滨泽, 等.北京9个树种叶片滞尘量及叶面微形态解释[J]. 环境科学研究, 2005,28(3): 384-392.
[27] 王蕾, 哈斯, 刘连友, 等.北京市六种针叶树叶面附着颗粒物的理化特征[J]. 应用生态学报, 2007,18(3): 487-492.
[28] 李海梅, 刘霞. 青岛市城阳区主要园林树种叶片表皮形态与滞尘量的关系[J]. 生态学杂志,2008, 27(10): 659-662. |