[1] QIN B, GAO G, ZHU G, et al. Lake eutrophication and its ecosystem response[J]. Chinese Science Bulletin, 2013, 58(9):961-970.
[2] 刘海琴, 邱园园, 闻学政, 等. 4种水生植物深度净化村镇生活污水厂尾水效果研究[J]. 中国生态农业学报, 2018(4):616-626.
[3] 姚敬博, 邵亮. 某城市污水处理厂提标改造工艺探讨[J]. 辽宁化工, 2017(5):498-501.
[4] 赵银慧, 李莉娜, 景立新, 等. 污水处理厂氮排放特征[J]. 中国环境监测, 2015(4):58-61.
[5] 陈立, 李成江, 郭兴芳, 等. 城镇污水处理厂提标改造的几点思考[J]. 水处理技术, 2011(9):120-122.
[6] 王建华, 陈永志, 彭永臻. 低碳氮比实际生活污水A~2O-BAF工艺低温脱氮除磷[J]. 中国环境科学, 2010(9):1195-1200.
[7] 陈翰, 马放, 李昂, 等. 低温条件下污水生物脱氮处理研究进展[J]. 中国给水排水, 2016(8):37-43.
[8] 黄民生, 崔贺, 常越亚, 等. 一种管式生物净水装置及其净水方法:201510377317.1[P]. 2015-10-14.
[9] 李斌, 郝瑞霞, 赵文莉. 玉米芯与海绵铁复合填料的反硝化脱氮特性[J]. 中国给水排水. 2014(7):31-34.
[10] 张翔凌, 阮聪颖, 黄华玲, 等. 不同类型LDHs覆膜改性人工湿地生物陶粒基质脱氮效果研究[J]. 环境科学学报, 2015(10):3178-3184.
[11] 张雁秋, 曹文平, 刘莉, 等. 基质对生态浮床净化效果和大型水生植物生长的影响[J]. 徐州工程学院学报(自然科学版), 2013(4):18-23.
[12] 栾晓男, 田云飞, 郑力, 等. 丝瓜络填料反硝化滤池对生活污水的净化[J]. 环境工程学报, 2016(7):3471-3476.
[13] 王营章, 张尚华, 刘志强, 等. 丝瓜络填料SBBR对生活污水脱氮除磷的试验研究[J]. 工业水处理, 2012(11):55-58.
[14] 马占青, 温淑瑶. 棕毛纤维介质对富营养化水体净化效果的研究[J]. 农业工程学报, 2008(9):229-233.
[15] 王曼曼, 汪家权, 褚华男. 固态碳源去除地下水硝酸盐的模拟实验[J]. 环境工程学报, 2013(2):501-506.
[16] 邵留, 徐祖信, 金伟, 等. 农业废物反硝化固体碳源的优选[J]. 中国环境科学, 2011(5):748-754.
[17] 陈耀章. 接触氧化填料问题的探讨[J]. 石油化工环境保护, 1992(3):5-9.
[18] 杨旻, 吴小刚, 张维昊, 等. 富营养化水体生态修复中水生植物的应用研究[J]. 环境科学与技术. 2007(7):98-102.
[19] 李哲, 王喜山, 赵国臣, 等. 生菜的营养价值及高产栽培技术[J]. 吉林蔬菜, 2014(9):14-15.
[20] 杨乐. 污水厂节地方法初探与强化脱氮实验研究[D]. 上海:华东师范大学, 2016.
[21] 韩剑宏, 刘燕, 朱浩君, 等. 反硝化生物滤池的自然挂膜启动研究[J]. 中国给水排水, 2015(3):1-4.
[22] QUAST C, PRUESSE E, YILMAZ P, et al. The SILVA ribosomal RNA gene database project:Improved data processing and web-based tools[J]. Nucleic Acids Research, 2013, 41(D1):D590-D596.
[23] 李治玲. 生物炭对紫色土和黄壤养分、微生物及酶活性的影响[D]. 重庆:西南大学, 2016.
[24] 马勇, 彭永臻, 于德爽. A/O生物脱氮工艺处理生活污水中试(二)系统性能和SND现象的研究[J]. 环境科学学报, 2006(5):710-715.
[25] ZHAO W H, ZHANG Y, LYV D M, et al. Advanced nitrogen and phosphorus removal in the pre-denitrification anaerobic/anoxic/aerobic nitrification sequence batch reactor (pre-A2NSBR) treating low carbon/nitrogen (C/N) wastewater[J]. Chemical Engineering Journal, 2016, 302:296-304.
[26] 刘欢, 王源, 骆灵喜, 等. 城市污水处理厂高溶解氧尾水脱氮研究[J]. 广东化工, 2016(14):26-28.
[27] KUBA T, VANLOOSDRECHT M, HEIJNEN J J. Phosphorus and nitrogen removal with minimal cod requirement by integration of denitrifying dephosphatation and nitrification in a two-sludge system[J]. Water Research, 1996, 30(7):1702-1710.
[28] CHOI C, LEE J, LEE K, et al. The effects on operation conditions of sludge retention time and carbon/nitrogen ratio in an intermittently aerated membrane bioreactor (IAMBR)[J]. Bioresource Technology, 2008, 99(13):5397-5401.
[29] 韦钦胜, 王保栋, 陈建芳, 等. 长江口外缺氧区生消过程和机制的再认知[J]. 中国科学:地球科学, 2015(2):187-206.
[30] 徐亚同. 废水反硝化除氮[J]. 上海环境科学, 1994(10):8-12.
[31] 乔启成, 杨燕舞, 王立章. 亚硝化控制技术的研究现状与动向[J]. 环境技术, 2005(5):47-49.
[32] SVEHLA P, JENICEK P, HABART J, et al. Use of the accumulation of nitrite in biological treatment of waste water[J]. Chemicke Listy, 2009, 103(3):255.
[33] 袁怡, 黄勇, 邓慧萍, 等. C/N比对反硝化过程中亚硝酸盐积累的影响分析[J]. 环境科学, 2013(4):1416-1420.
[34] BORGES M T, MORAIS A, CASTRO P. Performance of outdoor seawater treatment systems for recirculation in an intensive turbot (Scophthalmus maximus) farm[J]. Aquaculture International, 2003, 11(6):557-570.
[35] WU Q, HU Y, LI S, et al. Microbial mechanisms of using enhanced ecological floating beds for eutrophic water improvement[J]. Bioresource Technology, 2016, 211:451-456.
[36] CAO W, ZHANG Y. Removal of nitrogen (N) from hypereutrophic waters by ecological floating beds (EFBs) with various substrates[J]. Ecological Engineering, 2014, 62:148-152.
[37] LI L, HE C, JI G, et al. Nitrogen removal pathways in a tidal flow constructed wetland under flooded time constraints[J]. Ecological Engineering, 2015, 81:266-271.
[38] LI H D, ZHANG L, LIU J L, et al. Anti-shock Loading Performance of OAA/SBR Process in Biological Nitrogen Removal[J]. China Water & Wastewater. 2016, 32:80-83.
[39] CHEN Y, ZHAO Z, PENG Y, et al. Performance of a full-scale modified anaerobic/anoxic/oxic process:High-throughput sequence analysis of its microbial structures and their community functions[J]. Bioresource Technology, 2016, 220:225-232.
[40] 仝欣楠, 王欣泽, 何小娟, 等. 人工芦苇湿地氨氮污染物去除及氨氧化菌群落多样性分析[J]. 环境科学研究, 2014(2):218-224.
[41] GAO L, ZHOU W, HUANG J, et al. Nitrogen removal by the enhanced floating treatment wetlands from the secondary effluent[J]. Bioresource Technology, 2017, 234:243-252.
[42] ZHONG F, WU J, DAI Y, et al. Bacterial community analysis by PCR-DGGE and 454-pyrosequencing of horizontal subsurface flow constructed wetlands with front aeration[J]. Applied Microbiology & Biotechnology, 2015, 99(3):1499-1512.
[43] LIU Z, FRIGAARD N, VOGL K, et al. Complete genome of Ignavibacterium album, a metabolically versatile, flagellated, facultative anaerobe from the phylum Chlorobi[J]. Frontiers in Microbiology, 2012(3):185.
[44] HE Y, ZHOU G M, ZHAO Y C. Nitrification with high nitrite accumulation for the treatment of "Old" landfill leachates[J]. Environmental Engineering Science, 2007, 24(8):1084-1094.
[45] NIKOLAEV A, KOZLOV M N, KEVBRINA M V, et al. Candidatus "Jettenia moscovienalis" sp. nov., a new species of bacteria carrying out anaerobic ammonium oxidation[J]. Mikrobiologiia, 2015, 84(2):236-243.
[46] ALI M, HAROON M F, NARITA Y, et al. Draft genome sequence of the anaerobic ammonium-oxidizing bacterium "Candidatus Brocadia sp. 40"[J]. Genome Announcements, 2016, 4(6):e01377-16.
[47] 张诗颖, 吴鹏, 宋吟玲, 等. 厌氧氨氧化与反硝化协同脱氮处理城市污水[J]. 环境科学, 2015(11):4174-4179. |