[1] 王倩, 杨忠东, 毕研盟. 高光谱遥感仪器的光谱参数和信噪比需求[J]. 应用气象学报, 2014, 25(5):600-609.
[2] WMO GREENHOUSE GAS BULLETIN. The State of Greenhouse Gases in the Atmosphere Using Global Observations through 2016[EB/OL].[2018-03-01]. http://www._wmo._int/pages/prog/arep/gaw/ghg/ghgbulletin13.html.
[3] BUTLER J H, MONTZKA S A. The NOAA Annual Greenhouse Gas Index-2017 Update[R]. NOAA Earth System Research Laboratory, 2017.
[4] BALLANTYNE A P, ALDEN C B, MILLER J B, et al. Increase in observed net carbon dioxide uptake by land oceans during the past 50 years[J]. Nature, 2012, 488(7409):70.
[5] CHÉDIN A, SAUNDERS A, HOLLINGSWORTH A, et al. The feasibility of monitoring CO2 from highresolution infrared sounders[J]. Journal of Geophysical Research, 2003, 108(D2):49-65.
[6] ZHOU M, SHU J, SONG C, et al. Sensitivity studies for atmospheric carbon dioxide retrieval from atmospheric infrared sounder observations[J]. Journal of Applied Remote Sensing, 2014, 8(1). DOI:10. 1117/1. JRS. 8. 083697.
[7] SONG C, SHU J, ZHOU M, et al. Sensitivity studies of high-precision methane column concentration inversion using a line-by-line radiative transfer model[J]. Frontiers of Earth Science, 2013, 7(4):439-446.
[8] CHAHINE M T, CHEN L, DIMOTAKIS P, et al. Satellite remote sounding of mid-tropospheric CO2[J]. Geophysical Research Letters, 2008, 35(17):179-190.
[9] WENG F, ZHAO L, FERRARO R R, et al. Advanced microwave sounding unit cloud and precipitation algorithms[J]. Radio Science, 2003, 38(4). DOI:10. 1029/2002RS002679.
[10] CREVOISIER C, CHÉDIN A, MATSUEDA H, et al. First year of upper tropospheric integrated content of CO2 from IASI hyperspectral infrared observations[J]. Atmospheric Chemistry & Physics, 2009, 9(14):4797-4810.
[11] 陆宁. 基于CrIS热红外数据的晴空条件下CO2浓度遥感反演研究[D]. 北京:北京交通大学, 2015.
[12] 漆成莉, 顾明剑, 胡秀清, 等. 风云三号卫星红外高光谱探测技术及潜在应用[J]. 气象科技进展, 2016, 6(1):88-93.
[13] RABIER F, FOURRIE N, CHAFÄI D, et al. Channel selection methods for Infrared Atmospheric Sounding Interferometer radiances[J]. Quarterly Journal of the Royal Meteorological Society, 2002, 128(581):1011-1027.
[14] 毕研盟, 杨忠东, 卢乃锰, 等. 近红外高光谱探测仪通道选择[J]. 应用气象学报, 2014, 25(2):143-149.
[15] SHANNON C E. The mathematical theory of communication[M]. Champaign, IL:University of Illinois Press, 1998.
[16] 董超华. 卫星高光谱红外大气遥感原理和应用[M]. 北京:科学出版社, 2013:78-79, 87.
[17] RODGERS C D. Information content and optimization of high-spectral-resolution measurements[C]//SPIE's 1996 International Symposium on Optical Science, Engineering, and Instrumentation. International Society for Optics and Photonics, 1996.
[18] LERNER J A, WEISZ E, KIRCHENGAST G. Temperature and humidity retrieval from simulated Infrared Atmospheric Sounding Interferometer (IASI) measurements[J]. Journal of Geophysical Research Atmospheres, 2002, 107(D14):ACH 4-1-ACH 4-11.
[19] CREVOISIER C, CHEDIN A, SCOTT N A. AIRS channel selection for CO2, and other trace-gas retrievals[J]. Quarterly Journal of the Royal Meteorological Society, 2003, 129:2719-2740.
[20] 刘毅, 吕达仁, 陈洪滨, 等. 卫星遥感大气CO2的技术与方法进展综述[J]. 遥感技术与应用, 2011, 26(2):247-254.
[21] PAGANO T S, FETZER E J. The Atmospheric Infrared Sounder (AIRS) on the NASA Aqua Spacecraft:A general remote sensing tool for understanding atmospheric structure, dynamics, and composition[J]. Proceedings of SPIE, 2010, 7827. DOI:10. 1117/12. 865335.
[22] HANY, CHEN Y, JIN X, et al. Cross Track Infrared Sounder(CrIS) Sensor Data Record (SDR) User's GuideVersion 1[R]. Washington, DC:NOAA Technical ReportNESDIS 143, 2013.
[23] 张磊, 董超华, 张文建, 等. 星载干涉式超高光谱分辨率红外大气探测仪及其产品[J]. 气象科技, 2008, 36(5):639-642.
[24] SIMEONI D, BLUMSTEIN D, MACIASZEK T. Design and development of IASI instrument[J]. Proceedings of SPIE-The International Society for Optical Engineering, 2004, (5543):208-219.
[25] AUMANN H H, PAGANO T S, STROW L L. Atomospheric Infrared Sounder (AIRS) on the Earth Observing System[C]//International Asia-Pacific Symposium on Remote Sensing of, the Atmosphere, Environment, and Space. International Society for Optics and Photonics, 2001:332-343.
[26] 漆成莉. FY-3D星红外高光谱大气探测仪辐射定标方法研究[C]//第33届中国气象学会年会S21新一代气象卫星技术发展及其应用. 中国气象学会, 2016:4.
[27] 周曼蒂. 对流层CO2浓度卫星遥感反演及误差分析[D]. 上海:华东师范大学, 2013.
[28] ALVARADO M J, PAYNE V H, MLAWER E J, et al. Performance of the line-by-line radiative transfer model (LBLRTM) for temperature, water vapor, and trace gas retrievals:recent updates evaluated with IASI case studies[J]. Atmospheric Chemistry & Physics, 2013, 13(14):6687-6711.
[29] 叶函函, 王先华, 吴军, 等. 二氧化碳浓度高精度反演的敏感性研究[J]. 大气与环境光学学报, 2011, 6(3):208-214.
[30] CLOUGH S A, SHEPHARD M W, MLAWER E J, et al. Atmospheric radiative transfer modeling:Asummary of the AER codes[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2005, 91(2):233-244.
[31] GAMBACORTA A, BARNET C D. Methodology and Information Content of the NOAA NESDIS Operational Channel Selection for the Cross-Track Infrared Sounder (CrIS)[J]. IEEE Transactions on Geoscience & Remote Sensing, 2013, 51(6):3207-3216.
[32] CONWAY T J, TANS P P, WATERMAN L S, et al. Evidence for interannual variability of the carbon cycle from the National Oceanic and Atmospheric Administration/Climate Monitoring and Diagnostics Laboratory Global Air Sampling Network[J]. Journal of Geophysical Research Atmospheres, 1994, 99(D11):22831-22856.
[33] CHÉDIN A, HOLLINGSWORTH A, SCOTT N A, et al. Annual and seasonal variations of atmospheric CO2, N2O and CO concentrations retrieved from NOAA/TOVS satellite observations[J]. Geophysical Research Letters, 2002, 29(8):110-111.
[34] DIAO A, SHU J, SONG C. Global consistency check of AIRS and IASI total CO2 column concentrations using WDCGG ground-based measurements[J]. Frontiers of Earth Science, 2017, 11(1):1-10. |