[1] ZAHARIA M, DAS T, LI H Y, et al. Discretized streams:An efficient and fault-tolerant model for stream processing on large clusters[C]//Proceedings of the 4th Workshop on Hot Topics in Cloud Computing. USENIX Association, 2012. [2] IQBAL M H, SOOMRO T R. Big data analysis:Apache storm perspective[J]. International Journal of Computer Trends and Technology, 2015, 19(1):9-14. [3] BRESS S, KÖCHER B, HEIMEL M, et al. Ocelot/HyPE:Optimized data processing on heterogeneous hardware[J]. Proceedings of the VLDB Endowment, 2014, 7(13):1609-1612. [4] CARBONE P, KATSIFODIMOS A, EWEN S, et al. Apache Flink:Stream and batch processing in a single engine[J]. Bulletin of the IEEE Computer Society Technical Committee on Data Engineering, 2015, 36(4):28-38. [5] ZHANG S, HE J, HE B, et al. Omnidb:Towards portable and efficient query processing on parallel CPU/GPU architectures[J]. Proceedings of the VLDB Endowment, 2013, 6(12):1374-1377. [6] CHEN C, LI K, OUYANG A, et al. GFlink:An in-memory computing architecture on heterogeneous CPU-GPU clusters for big data[J]. IEEE Transactions on Parallel and Distributed Systems, 2018, 29(6):1275-1288. [7] Nvidia Cooperation. CUDA C Programming Guide[R/OL].(2018-04-01)[2019-05-02]. https://docs.nvidia.com/cuda/archive/9.1/pdf/CUDACProgrammingGuide.pdf. [8] BRESS S, HEIMEL M, SIEGMUND N, et al. GPU-accelerated database systems:Survey and open challenges[M]//Transactions on Large-Scale Data and Knowledge-Centered Systems XV. Berlin:Springer, 2014:1-35. [9] MOSTAK T. An overview of MapD (massively parallel database)[R]. White paper. Massachusetts Institute of Technology, 2013. [10] ROOT C, MOSTAK T. MapD:A GPU-powered big data analytics and visualization platform[C]//ACM SIGGRAPH 2016 Talks. ACM, 2016:73. [11] Kinetica DB Inc. Kinetica high performance analytics database[EB/OL].[2019-05-11]. https://www.kinetica.com. [12] SQream Technologies. SQream:Big Data SQL database[EB/OL].[2019-05-02]. https://sqream.com/. [13] CHEN Z, XU J, TANG J, et al. GPU-accelerated high-throughput online stream data processing[J]. IEEE Transactions on Big Data, 2016, 4(2):191-202. [14] CHEN C, LI K, OUYANG A, et al. GFlink:An in-memory computing architecture on heterogeneous CPU-GPU clusters for big data[J]. IEEE Transactions on Parallel and Distributed Systems, 2018, 29(6):1275-1288. [15] ZHANG Y, MUELLER F. GStream:A general-purpose data streaming framework on GPU clusters[C]//2011 International Conference on Parallel Processing. IEEE, 2011:245-254. [16] KIM J, SEO S, LEE J, et al. SnuCL:An OpenCL framework for heterogeneous CPU/GPU clusters[C]//Proceedings of the 26th ACM International Conference on Supercomputing. ACM, 2012:341-352. [17] HEWANADUNGODAGE C, XIA Y, LEE J J. GStreamMiner:A GPU-accelerated data stream mining framework[C]//Proceedings of the 25th ACM International on Conference on Information and Knowledge Management. ACM, 2016:2489-2492. [18] HUYNH H P, HAGIESCU A, WONG W F, et al. Scalable framework for mapping streaming applications onto multi-GPU systems[C]//ACM Sigplan Notices. ACM, 2012, 47(8):1-10. |