华东师范大学学报(自然科学版) ›› 2019, Vol. 2019 ›› Issue (6): 1-6.doi: 10.3969/j.issn.1000-5641.2019.06.001

• 数学 •    下一篇

一类非线性离散扰动系统的反周期解

孟鑫   

  1. 吉林师范大学 数学学院, 吉林 四平 136000
  • 收稿日期:2018-09-13 出版日期:2019-11-25 发布日期:2019-11-26
  • 作者简介:孟鑫,男,博士,副教授,研究方向为动力系统.E-mail:mqym@sina.cn.
  • 基金资助:
    国家自然科学基金(10971084);吉林省教育厅"十三五"科学技术项目(JJKH20170368KJ);吉林师范大学博士启动项目(吉师博2016002号)

Anti-periodic solutions for a class of nonlinear discrete perturbed systems

MENG Xin   

  1. College of Mathematics, Jilin Normal University, Siping Jilin 136000, China
  • Received:2018-09-13 Online:2019-11-25 Published:2019-11-26

摘要: 研究了一类具有指数型二分性非线性离散扰动系统的反周期解.应用Banach不动点定理,给出了非线性离散扰动系统存在唯一反周期解的充分条件,并通过例子说明了主要结论在实际问题中的应用.

关键词: 扰动系统, 指数型二分性, 反周期解, Banach不动点定理

Abstract: In this paper, anti-periodic solutions for a class of nonlinear discrete perturbed systems with exponential dichotomy are studied. By means of the Banach fixed point theorem, new sufficient conditions for the existence and uniqueness of anti-periodic solutions for nonlinear discrete perturbed systems are established. An example is given to illustrate the results we obtained.

Key words: perturbed systems, exponential dichotomy, anti-periodic solution, Banach fixed point theorem

中图分类号: