华东师范大学学报(自然科学版) ›› 2020, Vol. 2020 ›› Issue (1): 16-23.doi: 10.3969/j.issn.1000-5641.201911001

• 数学 • 上一篇    下一篇

双曲型交换四元数的极表示

孔祥强   

  1. 菏泽学院 数学与统计学院, 山东 菏泽 274015
  • 收稿日期:2018-12-19 发布日期:2020-01-13
  • 作者简介:孔祥强,男,副教授,研究方向为四元数理论及其应用.E-mail:kong3058@126.com
  • 基金资助:
    山东省自然科学基金(ZR201709250116,ZR2017MA029);菏泽学院科研基金科技计划项目(XY17KJ02);菏泽学院大学数学课程“线上”+“线下”混合式教学模式研究与实践项目(2018311)

The polar form of hyperbolic commutative quaternions

KONG Xiangqiang   

  1. School of Mathematics and Statistics, Heze University, Heze Shandong 274015, China
  • Received:2018-12-19 Published:2020-01-13

摘要: 以双曲型交换四元数的概念为依托,首先给出了双曲型交换四元数的e1-e2表示及矩阵表示形式;其次,给出了双曲型交换四元数的极表示定理,并证明了极表示的存在性与唯一性,得到双曲型交换四元数极表示的系列性质;最后,探讨了双曲型交换四元数的极表示与e1-e2表示、矩阵表示之间的关系,为进一步深入研究双曲型交换四元数的应用提供了理论依据.

关键词: 双曲型交换四元数, 极表示, 矩阵表示, 范数, 行列式

Abstract: Firstly, this paper presents the e1-e2 representation and matrix representation of hyperbolic commutative quaternions. Secondly, the polar form theorem of hyperbolic commutative quaternion is presented; the existence and uniqueness of the respective polar form are proven, and a series of properties for the hyperbolic commutative quaternion polar form are obtained. Lastly, the relationship between the polar form, e1-e2 representation and matrix representation of hyperbolic commutative quaternions are discussed. Hence, the paper provides a theoretical basis for further research on the application of hyperbolic commutative quaternions.

Key words: hyperbolic commutative quaternion, polar form, matrix representation, norm, determinant

中图分类号: