[1] ZHONG L, LONG Y J, HAN X. Preparation and wear resistance properties of CrN coating by magnetron sputtering on tool surface[J]. Surface Technology, 2018, 47(10):151-156. [2] HANG S, SUN D, FU Y Q, et al. Toughness measurement of thin films:A critical review[J]. Surface & Coatings Technology, 2005, 198(1/2/3):74-84. [3] BROWNE J D, LIDDELL P R, STREET R, et al. An investigation of the antiferromagnetic transition of CrN[J]. Physica Status Solidi A, 1970, 1(4):715-723. [4] CONSTANTIN C, HAIDER M B, INGRAM D, et al. Metal/semiconductor phase transition in chromium nitride(001) grown by rf-plasma-assisted molecular-beam epitaxy[J]. Applied Physics Letters, 2004, 85(26):6371-6373. DOI:10.1063/1.1836878. [5] GALL D, SHIN C S, HAASCH R T, et al. Band gap in epitaxial NaCl-structure CrN(001) layers[J]. Journal of Applied Physics, 2002, 91(9):5882-5886. DOI:10.1063/1.1466528. [6] HERLE P S, HEGDE M S, VASATHACHARYA N Y, et al. Synthesis of TiN, VN, and CrN from ammonolysis of TiS2, VS2, and Cr2S3[J]. Journal of Solid State Chemistry, 1997, 134(1):120-127. DOI:10.1006/jssc.1997.7554. [7] CORLISS L M, ELLIOTT N, HASTINGS J M. Antiferromagnetic structure of CrN[J]. Physical Review, 1960, 117(4):929-935. [8] FILIPPETTI A, HILL N A. Magnetic stress as a driving force of structural distortions:The case of CrN[J]. Physical Review Letters, 2000, 85(24):5166-5169. DOI:10.1103/PhysRevLett.85.5166. [9] FILIPPETTI A, PICKETT W E, KLEIN B M. Competition between magnetic and structural transitions in CrN[J]. Physical Review B, 1999, 59(10):7043-7050. DOI:10.1103/PhysRevB.59.7043. [10] HERWADKAR A, LAMBRECHT W R L. Electronic structure of CrN:A borderline Mott insulator[J]. Physical Review B, 2009, 79(3):035125. DOI:10.1103/PhysRevB.79.035125. [11] KRESSE G, HAFNER J. Ab initio molecular dynamics for open-shell transition metals[J]. Physical Review B, 1993, 48(17):13115-13118. DOI:10.1103/PhysRevB.48.13115. [12] KRESSE G, HAFNER J. Ab initio molecular dynamics for liquid metals[J]. Physical Review B, 1993, 47(1):558-561. DOI:10.1103/PhysRevB.47.558. [13] KRESSE G, FURTHMULLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, 1996, 54(16):11169-11186. DOI:10.1103/PhysRevB.54.11169. [14] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple (vol 77, pg 3865, 1996)[J]. Physical Review Letters, 1997, 78(7):1396-1396. [15] ANISIMOV V I, GUNNARSSON O. Density-functional calculation of effective Coulomb interactions in metals[J]. Physical Review B, 1991, 43(10):7570-7574. DOI:10.1103/PhysRevB.43.7570. [16] ANISIMOV V I, ZAANEN J, ANDERSEN O K. Band theory and Mott insulators:Hubbard U instead of Stoner I[J]. Physical Review B, 1991, 44(3):943-954. DOI:10.1103/PhysRevB.44.943. [17] LIECHTENSTEIN A I, ANISIMOV V I, ZAANEN J. Density-functional theory and strong interactions:orbital ordering in Mott-Hubbard insulators[J]. Physical Review B, 1995, 52(8):R5467-R5470. DOI:10.1103/PhysRevB.52.R5467. [18] PETUKHOV A G, MAZIN I I, CHIONCEL L, et al. Correlated metals and the LDA+U method[J]. Physical Review B, 2003, 67(15):153106. [19] MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations[J]. Physical Review B, 1976, 13(12):5188-5192. DOI:10.1103/PhysRevB.13.5188. [20] FRANK W, lSASSER C E, FAHNLE M. Ab initio force-constant method for phonon dispersions in alkali metals[J]. Physical Review Letters, 1995, 74(10):1791-1794. DOI:10.1103/PhysRevLett.74.1791. [21] BLAHA P, SCHWARZ K, MADSEN G K H, et al. WIEN2k:An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (User's Guide, WIEN2k_14.2(Release 10/15/2014)[M]. Wien, Austria:[s.n.], 2018. [22] SCHWARZ K, BLAHA P, MADSEN G K H. Electronic structure calculations of solids using the WIEN2k package for material sciences[J]. Computer Physics Communications, 2002, 147(1/2):71-76. DOI:10.1016/S0010-4655(02)00206-0. [23] ANDERSEN O K, SAHA-DASGUPTA T. Muffin-tin orbitals of arbitrary order[J]. Physical Review B, 2000, 62(24):16219-16222. DOI:10.1103/PhysRevB.62.R16219. [24] CHEN H Y, TSAI C J, LU F H. The Young's modulus of chromium nitride films[J]. Surface & Coatings Technology, 2004, 184(1):69-73. [25] ALLING B, MARTEN T, ABRIKOSOV I A. Questionable collapse of the bulk modulus in CrN[J]. Nature Materials, 2010, 9(4):283-284. DOI:10.1038/nmat2722. [26] LIN H, ZENG Z. Structural, electronic, and magnetic properties of CrN under high pressure[J]. Chinese Physics B, 2011, 20(7):077102. DOI:10.1088/674-1056/20/7/077102. [27] RIVADULLA F, BANOBRE-LOPEZ M, QUINTELA C X, et al. Reduction of the bulk modulus at high pressure in CrN[J]. Nature Materials, 2009, 8(12):947-951. DOI:10.1038/nmat2549. [28] COHEN R E, MAZIN I I, ISAAK D G. Magnetic collapse in transition metal oxides at high pressure:Implications for the Earth[J]. Science, 1997, 275(5300):654-657. DOI:10.1126/science.275.5300.654. |