[1] MALDACENA J. The large-N limit of superconformal field theories and supergravity[J]. International journal of Theoretical Physics, 1999, 38(4):1113-1133. [2] MALDACENA, J. Eternal black holes in anti-de Sitter[J]. Journal of High Energy Physics, 2003, JHEP04(2003):Article number 21. [3] SUSSKIND L. Computational complexity and black hole horizons[J]. Fortsch Phys, 2016, 64(1):24-43. DOI:10.1002/prop.201500092. [4] SUSSKIND L. Addendum to computational complexity and black[J]. Fortsch Phys, 2016, 64(1):44-48. [5] STANFORD D, SUSSKIND L. Complexity and shock wave geometries[J]. Physical Review D, 2014, 90:126007. DOI:10.1103/PhysRevD.90.126007. [6] BROWN A R, ROBERTS D A, SUSSKIND L, et al. Complexity, action, and black holes[J]. Physical Review D, 2016, 93:086006. DOI:10.1103/PhysRevD.93.086006. [7] BROWN A R, ROBERTS D A, SUSSKIND L, et al. Holographic complexity equals bulk action?[J]. Physical Review Letters, 2016, 116:191301. DOI:10.1103/PhysRevLett.116.191301. [8] LLOYD S. Ultimate physical limits to computation[J]. Nature, 2000, 406:1047-1054. DOI:10.1038/35023282. [9] LEHNER L, MYERS R C, POISSON E, et al. Gravitational action with null boundaries[J]. Physical Review D, 2016, 94:084046. DOI:10.1103/PhysRevD.94.084046. [10] CAI R G, RUAN S M, WANG S J, et al. Action growth for AdS black holes[J]. Journal of High Energy Physics, 2016, JHEP09(2016):Article number 161. DOI:10.1007/JHEP09(2016)161. |