华东师范大学学报(自然科学版) ›› 2023, Vol. 2023 ›› Issue (3): 71-81.doi: 10.3969/j.issn.1000-5641.2023.03.008

• 遥感与地理信息系统 • 上一篇    下一篇

冬小麦多时期冠层含水量遗传优化遥感反演

聂素云1, 杨彬2, 夏微1, 张远1,*()   

  1. 1. 华东师范大学 地理科学学院 地理信息科学教育部重点实验室, 上海 200241
    2. 中共辽宁省委党校 现代科技教研部, 沈阳 110004
  • 收稿日期:2021-11-02 接受日期:2022-03-17 出版日期:2023-05-25 发布日期:2023-05-25
  • 通讯作者: 张远 E-mail:yzhang@geo.ecnu.edu.cn
  • 基金资助:
    国家自然科学基金 (41571410)

Remote sensing inversion of multi-period winter wheat canopy water content based on a genetic algorithm

Suyun NIE1, Bin YANG2, Wei XIA1, Yuan ZHANG1,*()   

  1. 1. Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China
    2. Department of Modern Science and Technology, Party School of Liaoning Provincial Party Committee, Shenyang 110004, China
  • Received:2021-11-02 Accepted:2022-03-17 Online:2023-05-25 Published:2023-05-25
  • Contact: Yuan ZHANG E-mail:yzhang@geo.ecnu.edu.cn

摘要:

开展作物冠层含水量的遥感反演有利于评估麦田干旱胁迫、实施精准灌溉. 为快速获取华北地区冬小麦生长期冠层含水量, 本文利用在2017年1—5月冬小麦生长期获取的Landsat-8 OLI和Sentinel-2 MSI多时相遥感影像, 基于混合像元分解模型, 建立了归一化水指数与麦田实测含水量之间的定量关系. 通过构建反演方程并结合遗传优化算法, 求解冬小麦冠层含水量. 对比地面实测数据, 研究结果显示, 本文方法能取得较优的反演结果, 决定系数 (R2) 与均方根误差(root mean squared error, RMSE)分别为0.567和5.6%. 与直接利用归一化水指数的反演方法相比, 误差降低20%以上. 研究表明, 量化小麦冠层和土壤背景的不同线性混合比, 可以有效消除土壤对小麦冠层含水量反演的影响, 对小麦等作物生长的遥感监测具有重要的应用价值.

关键词: 冠层含水量, 多时相遥感影像, 像元二分模型, 遗传算法, 冬小麦

Abstract:

The remote sensing inversion of crop canopy water content is a valuable for assessing drought stress of wheat fields and implementing precision irrigation. This study aimed to quickly obtain the canopy water content during the growth period for winter wheat in North China by using multi-temporal remote sensing images of Landsat-8 OLI and Sentinel-2 MSI from January to May 2017. The regression relationship was constructed with NDWI and measured water content in a wheat field via the mixed pixel decomposition model. The genetic algorithm was then used to inverse the canopy water content. The proposed method demonstrated better performance compared to ground-truth data, with the coefficient of determination (R2) and the root mean square error (RMSE) of 0.567 and 5.6%, respectively. Additionally, the error was reduced by more than 20% when compared to the direct inversion based on NDWI. This study indicates that quantification of different linear mixing ratios of wheat canopy and background soil can effectively eliminate the influence of soil on wheat water content inversion, and is crucial for the application of remote sensing to wheat growth monitoring.

Key words: canopy water content, multi-temporal remote sensing image, pixel dichotomy model, genetic algorithm, winter wheat

中图分类号: