华东师范大学学报(自然科学版) ›› 2024, Vol. 2024 ›› Issue (5): 162-172.doi: 10.3969/j.issn.1000-5641.2024.05.015

• 教育基础设施 • 上一篇    下一篇

基于IPEX-LLM的本地轻量化课程教学智能辅助系统

张嘉睿1, 张豈明1, 毕枫林1, 张琰彬1,*(), 王伟1, 任而今2, 张海立3   

  1. 1. 华东师范大学 数据科学与工程学院, 上海 200062
    2. 英特尔亚太研发有限公司, 上海 200336
    3. 驭行科技(浙江)有限公司上海分公司, 上海 201821
  • 收稿日期:2024-06-20 出版日期:2024-09-25 发布日期:2024-09-23
  • 通讯作者: 张琰彬 E-mail:ybzhang@dase.ecnu.edu.cn

Locally lightweight course teaching-assistant system based on IPEX-LLM

Jiarui ZHANG1, Qiming ZHANG1, Fenglin BI1, Yanbin ZHANG1,*(), Wei WANG1, Erjin REN2, Haili ZHANG3   

  1. 1. School of Data Science and Engineering, East China Normal University, Shanghai 200062, China
    2. Intel Asia Pacific R & D Co. Ltd., Shanghai 200336, China
    3. Yuxing Technology (Zhejiang) Co. Ltd. Shanghai Branch, Shanghai 201821, China
  • Received:2024-06-20 Online:2024-09-25 Published:2024-09-23
  • Contact: Yanbin ZHANG E-mail:ybzhang@dase.ecnu.edu.cn

摘要:

提出并实现了一个本地轻量化课程教学智能辅助系统. 该系统利用IPEX-LLM (Intel PyTorch extention for large language model)加速库, 在计算资源受限的设备上高效部署并运行经过QLoRA(quantum-logic optimized resource allocation)框架微调的大语言模型, 并结合增强检索技术, 实现了智能问答、智能出题、教学大纲生成、教学演示文档生成等4个主要功能模块的课程灵活定制, 在帮助教师提高教学备课和授课的质量与效率、保护数据隐私的同时, 支撑学生个性化学习并提供实时反馈. 在性能实验中, 以集成优化后的Chatglm3-6B模型为例, 该系统处理64-token输出任务时仅需4.08 s, 验证了其在资源受限环境下快速推理的能力. 在实践案例分析中, 通过与原生Chatgml-6B和ChatGPT4.0在功能实现上的对比, 进一步表明了该系统具备优越的准确性和实用性.

关键词: 智能辅助, 计算资源受限, IPEX-LLM, 微调, 增强检索

Abstract:

This study introduces and implements a local, lightweight, intelligent teaching-assistant system. Using the IPEX-LLM (Intel PyTorch extention for large language model) acceleration library, the system can efficiently deploy and execute large language models that are fine-tuned using the QLoRA (quantum-logic optimized resource allocation) framework on devices with limited computational resources. Combining this with enhanced retrieval techniques, the system provides flexible course customization through four major functional modules: intelligent Q&A, automated question generation, syllabus creation, and course PPT generation. This system is intended to assist educators in improving the quality and efficiency of lesson preparation and delivery, safeguarding data privacy, supporting personalized student learning, and offering real-time feedback. Performance tests exemplified by the optimized Chatglm3-6B model show the rapid inference capability of the system via the processing of a 64-token output task within 4.08 s in a resource-constrained environment. A practical case study comparing the functionality of the system with native Chatglm-6B and ChatGPT 4.0 further validates its superior accuracy and practicality.

Key words: intelligent assistance, limited computational resources, IPEX-LLM(Intel PyTorch extention for large language model), fine-tuning, enhanced retrieval

中图分类号: