1 |
许苗,杨又.强人工智能赋能个性化教育研究[J/OL]. 软件导刊: 1-9[2024-05-23]. http://kns.cnki.net/kcms/detail/42.1671.TP.20240425.1140.012.html.
|
2 |
张凯, 覃正楚, 况莹.. 智慧教育环境中计算机辅助教学应用研究. 电脑知识与技术, 2023, 19 (13): 161- 163, 170.
|
3 |
OLIVEIRA K K S, DE SOUZA R A C.. Digital transformation towards education 4.0. Informatics in Education, 2022, 21 (2): 283- 309.
|
4 |
MUKUL E, BÜYÜKÖZKAN G.. Digital transformation in education: A systematic review of education 4.0. Technological Forecasting and Social Change, 2023, 194, 122664.
|
5 |
仲玉维.. 人工智能大模型引发的教育变革探索. 中小学信息技术教育, 2024, (5): 4.
|
6 |
DAN Y H, LEI Z K, GU Y Y, et al. EduChat: A large-scale language model-based chatbot system for intelligent education [EB/OL]. (2023-08-05)[2024-05-01]. https://doi.org/10.48550/arXiv.2308.02773.
|
7 |
魏忠.. 大模型下的教育品质与数据禁地. 中国信息技术教育, 2024, (10): 9.
|
8 |
DETTMERS T, PAGNONI A, HOLTZMAN A, et al. QLoRA: Efficient finetuning of quantized LLMs [EB/OL]. (2023-05-23)[2024-05-23]. https://doi.org/10.48550/arXiv.2305.14314.
|
9 |
DAI J J, DING D, SHI D, et al. BigDL 2.0: Seamless scaling of AI pipelines from laptops to distributed cluster [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2022: 21439-21446.
|
10 |
曾荣科, 李倩倩, 周文健, 等. 基于学习者画像的个性化习题资源推荐系统设计与实现 [J/OL]. 企业科技与发展, 2024: 1-4[2024-05-23]. https://doi.org/10.20137/j.cnki.45-1359/t.20240510.001.
|
11 |
张佳婷. 基于学习行为分析的学业风险预警及视频推荐方法研究[D]. 西安: 西安理工大学, 2024.
|
12 |
Chen L J, Chen P P, Lin Z J.. Artificial intelligence in education: A review. IEEE Access, 2020, 8, 75264- 75278.
|
13 |
PARK W, KWON H.. Implementing artificial intelligence education for middle school technology education in Republic of Korea. International Journal of Technology and Design Education, 2024, 34 (1): 109- 135.
|
14 |
NOSENKO Y.. Alta solution from Knewton as a tool of support for adaptive learning in mathematics. Educational Discourse: A Collection of Scientific Papers, 2020, 28 (11): 69- 81.
|
15 |
亢旭静. DreamBox Learning自适应学习平台与数学学科整合案例研究[D]. 太原: 山西师范大学, 2023.
|
16 |
卢金禹, 华博, 李志, 等.. 基于IPTV互动技术的云课堂系统设计及应用. 广播与电视技术, 2023, 50 (3): 22- 25.
|
17 |
ZHOU Y X, YANG K C. Exploring tensorrt to improve real-time inference for deep learning [C]// 2022 IEEE 24th Int Conf on High Performance Computing & Communications; 8th Int Conf on Data Science & Systems; 20th Int Conf on Smart City; 8th Int Conf on Dependability in Sensor, Cloud & Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys). IEEE, 2022: 2011-2018.
|
18 |
KIM S Y, LEE J, KIM C H, et al. Extending the ONNX runtime framework for the processing-in-memory execution [C]// 2022 International Conference on Electronics, Information, and Communication (ICEIC). IEEE, 2022. DOI: 10.1109/ICEIC54506.2022.9748444
|
19 |
IPEX-LLM Documentation [EB/OL]. [2024-05-23]. https://ipex-llm.readthedocs.io/en/latest/index.html.
|
20 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY, USA: Curran Associates Inc., 2017: 6000-6010.
|
21 |
RAFFEL C, SHAZEER N, ROBERTS A, et al.. Exploring the limits of transfer learning with a unified text-to-text transformer. Journal of Machine Learning Research, 2020, 21 (1): 5485- 5551.
|
22 |
GÉRON A. Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow [M]. Sebastopol, CA, United States: O’Reilly Media Inc., 2022.
|
23 |
CHEN L C, LI Z R. Bailong: Bilingual transfer learning based on QLoRA and Zip-tie embedding [EB/OL]. (2024-04-01)[2024-05-23]. https://doi.org/10.48550/arXiv.2404.00862.
|
24 |
QIN H T, MA X D, ZHENG X Y, et al. Accurate LoRA-finetuning quantization of LLMs via information retention [EB/OL]. (2024-02-08)[2024-05-23]. https://doi.org/10.48550/arXiv.2402.05445.
|
25 |
DU Z X, QIAN Y J, LIU X, et al. GLM: General language model pretraining with autoregressive blank infilling [C]// Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics (ACL), 2022: 320-335.
|
26 |
BAI J Z, BAI S, CHU Y F, et al. Qwen technical report [EB/OL]. (2023-09-28)[2024-05-23]. https://doi.org/10.48550/arXiv.2309.16609.
|
27 |
BISONG E. Kubeflow and Kubeflow pipelines [M]// Building Machine Learning and Deep Learning Models on Google Cloud Platform. Berkeley, CA, United States: Apress, 2019: 671-685.
|
28 |
SUN T X, ZHANG X T, HE Z F, et al. MOSS: An open conversational large language model [J]. Machine Intelligence Research, 2024: Latest articles. DOI: 10.1007/s11633-024-1502-8. https://link.springer.com/content/pdf/10.1007/s11633-024-1502-8.pdf.
|
29 |
李庆辉. 深入浅出 Pandas: 利用 Python 进行数据处理与分析[M]. 北京: 机械工业出版社, 2021.
|
30 |
CURTIS A E, SMITH T A, ZIGANSHIN B A, et al.. The mystery of the Z-score. Aorta, 2016, 4, 124- 130.
|
31 |
JIANG Z B, XU F, GAO L Y, et al. Active retrieval augmented generation [C]// Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics (ACL), 2023: 7969-7992.
|
32 |
LYU Y J, LI Z Y, NIU S M, et al. CRUD-RAG: A comprehensive Chinese benchmark for retrieval-augmented generation of large language models [EB/OL]. (2024-02-19)[2024-05-23]. https://doi.org/10.48550/arXiv.2401.17043.
|