1 |
金小伟, 赵先富, 渠晓东, 等.. 我国流域水生态监测与评价体系研究进展及发展对策. 湖泊科学, 2023, 35 (3): 755- 765.
|
2 |
SUN K N, HU L T, SUN J C, et al.. Quantifying the contribution of ecological water replenishment on aquifer recovery using a refined groundwater model. Science of the Total Environment, 2023, 857, 159216.
|
3 |
YAO X, WANG Z, LIU W, et al.. Pollution in river tributaries restricts the water quality of ecological water replenishment in the Baiyangdian watershed, China. Environmental Science and Pollution Research International, 2023, 30 (18): 51556- 51570.
|
4 |
BAI L, BAI Y, HOU Y, et al.. Ecological water replenishment to the Yongding River, China: Effects of different water sources on inorganic ions and organic matter characteristics. Environmental Science and Pollution Research International, 2023, 30 (13): 39107- 39120.
|
5 |
吴浩云, 甘月云, 金科.. “引江济太”20年: 工程实践、成效和未来挑战. 湖泊科学, 2022, 34 (5): 1393- 1412.
|
6 |
徐英三, 吴旭.. 2002年南四湖应急生态补水的回顾和思考. 防汛与抗旱, 2003, (4): 40- 45.
|
7 |
杨学新, 任会来.. 白洋淀近七十年来“干淀”问题探析. 河北大学学报(哲学社会科学版), 2023, 48 (2): 140- 148.
|
8 |
MARTIN S L, SORANNO P A.. Lake landscape position: Relationships to hydrologic connectivity and landscape features. Limnology and Oceanography, 2006, 51 (2): 801- 814.
|
9 |
HOEKEMA D J, SRIDHAR V.. A system dynamics model for conjunctive management of water resources in the Snake River Basin. Journal of the American Water Resources Association, 2013, 49 (6): 1327- 1350.
|
10 |
NOORDHUIS R, VAN ZUIDAM B G, PEETERS E T H M, et al.. Further improvements in water quality of the Dutch Borderlakes: Two types of clear states at different nutrient levels. Aquatic Ecology, 2016, 50 (3): 521- 539.
|
11 |
ZHANG X Q, LU Y H, ZHENG Z W, et al.. Simulation study on the impact of south-north water transfer central line recharge on the water environment of Bai River. Water, 2023, 15 (10): 1871.
|
12 |
魏健, 潘兴瑶, 孔刚, 等.. 基于生态补水的缺水河流生态修复研究. 水资源与水工程学报, 2020, 31 (1): 64- 69.
|
13 |
李宗礼, 刘晓洁, 田英, 等.. 南方河网地区河湖水系连通的实践与思考. 资源科学, 2011, 33 (12): 2221- 2225.
|
14 |
WANG Y P, LIU G, ZHU S L, et al.. Assessment of impacts of water transfer on lake flow and water quality in Lake Chaohu using a three-dimensional hydrodynamic-ecological model. Journal of Hydrology: Regional Studies, 2023, 46, 101333.
|
15 |
黄金凤, 宋云浩, 董庆华.. 南京市高淳区城市水网水环境改善模拟研究. 中国农村水利水电, 2020, (5): 68- 72.
|
16 |
许益新, 李一平, 罗育池, 等.. 引水改善平原感潮河网水质效果评估. 水资源保护, 2019, 35 (6): 124- 130.
|
17 |
HARVEY J, GOMEZ-VELEZ J, SCHMADEL N, et al.. How hydrologic connectivity regulates water quality in river corridors. Journal of the American Water Resources Association, 2019, 55 (2): 369- 381.
|
18 |
WANG X, CHEN Y, YUAN Q S, et al.. Effect of river damming on nutrient transport and transformation and its countermeasures. Frontiers in Marine Science, 2022, 9, 1078216.
|
19 |
SHEN M H, LIU X Q.. Assessing the effects of lateral hydrological connectivity alteration on freshwater ecosystems: A meta-analysis. Ecological Indicators, 2021, 125, 107572.
|
20 |
韦秋莹, 刘丙军.. 感潮河网区白云湖水系生态环境补水研究. 水电能源科学, 2023, 41 (1): 38- 41.
|
21 |
LIU J, DING R, CHEN Y, et al.. Assessment and optimization of water resources regulation for river networks in the tidal plain−A case study of the Qingsong area in Shanghai. Water, 2022, 14 (21): 3523.
|
22 |
高勋, 陈星, 卢娟娟, 等.. 台州主城区河道生态需水计算与水量调度. 水利水电科技进展, 2023, 43 (3): 55- 61.
|
23 |
GAO C, WANG Z Y, JI X M, et al.. Coupled improvements on hydrodynamics and water quality by flowing water in towns with lakes. Environmental Science and Pollution Research International, 2023, 30 (16): 46813- 46825.
|
24 |
QIN Z H, HE Z W, WU G Z, et al.. Developing water-quality model for Jingpo Lake based on EFDC. Water, 2022, 14 (17): 2596.
|
25 |
张现国, 王慧鹏, 黄绵松, 等.. 基于EFDC模型的感潮河网地区闸门调度研究. 人民珠江, 2022, 43 (7): 96- 102.
|
26 |
王思如, 顾一成, 杨大文, 等.. 长江下游典型平原城市感潮河网水动力提升分析. 水科学进展, 2022, 33 (1): 91- 101.
|
27 |
刘丹, 王烜, 李春晖, 等.. 水文连通性对湖泊生态环境影响的研究进展. 长江流域资源与环境, 2019, 28 (7): 1702- 1715.
|
28 |
ZHANG S S, PANG Y M, XU H Z, et al.. Shift of phytoplankton assemblages in a temperate lake located on the eastern route of the South-to-North Water Diversion Project. Environmental Research, 2023, 227, 115805.
|
29 |
张俊芳, 陈威, 宋以兴, 等.. 雅砻江下游浮游植物群落结构时空变化特征及环境驱动因子. 长江流域资源与环境, 2023, 32 (5): 950- 960.
|
30 |
王昊. 洞庭湖不同区域浮游生物群落特征及其对水文连通的响应研究[D]. 西安: 西安理工大学, 2021.
|
31 |
赵世高, 董伟萍, 王青, 等.. 白荡湖流域水文连通对浮游生物群落结构的影响. 环境工程, 2023, 41 (1): 1- 9.
|
32 |
ZHANG L J, YANG J H, ZHANG Y, et al.. eDNA biomonitoring revealed the ecological effects of water diversion projects between Yangtze River and Tai Lake. Water Research, 2022, 210, 117994.
|
33 |
MENG F H, LI Z X, LI L, et al.. Phytoplankton alpha diversity indices response the trophic state variation in hydrologically connected aquatic habitats in the Harbin Section of the Songhua River. Scientific Reports, 2020, 10 (1): 21337.
|
34 |
WANG D S, GAN X Y, WANG Z Q, et al.. Research status on remediation of eutrophic water by submerged macrophytes: A review. Process Safety and Environmental Protection, 2023, 169, 671- 684.
|
35 |
郭凯迪, 张晓波, 刘培中, 等.. 西洞庭湖沉水植物分布格局对环境因子及水文情势差异的响应. 湖泊科学, 2020, 32 (6): 1736- 1748.
|
36 |
ZHOU X D, XU M Z, WANG Z Y, et al.. Responses of macroinvertebrate assemblages to environmental variations in the river-oxbow lake system of the Zoige wetland (Bai River, Qinghai-Tibet Plateau). Science of the Total Environment, 2019, 659, 150- 160.
|
37 |
刘子健, 李卫明, 张续同, 等.. 静水与流水条件下沉水植物生长对上覆水和沉积物磷迁移的影响. 环境科学研究, 2023, 36 (5): 975- 985.
|
38 |
鄢文皓, 王会会, 李前正, 等.. 影响沉水植物恢复的环境阈值研究进展. 生态科学, 2020, 39 (5): 240- 247.
|
39 |
YANG C T, SHI X Y, NAN J, et al.. Morphological responses of the submerged macrophyte Vallisneria natans along an underwater light gradient: A mesocosm experiment reveals the importance of the Secchi depth to water depth ratio. Science of the Total Environment, 2022, 808, 152199.
|
40 |
徐杰, 何萍, 刘存歧, 等.. 白洋淀沉水植物群落时空变化及影响因素. 环境科学研究, 2022, 35 (7): 1658- 1669.
|
41 |
董雅欠, 赵文, 季世琛, 等.. 北京潮白河水系浮游动物群落结构特征及水质评价. 大连海洋大学学报, 2020, 35 (3): 424- 431.
|
42 |
白海锋, 王怡睿, 宋进喜, 等.. 渭河浮游生物群落结构特征及其与环境因子的关系. 生态环境学报, 2022, 31 (1): 117- 130.
|
43 |
GOŹDZIEJEWSKA A, GLIŃSKA-LEWCZUK K, OBOLEWSKI K, et al.. Effects of lateral connectivity on zooplankton community structure in floodplain lakes. Hydrobiologia, 2016, 774 (1): 7- 21.
|
44 |
NAPIÓRKOWSKI P, BĄKOWSKA M, MROZIŃSKA N, et al.. The effect of hydrological connectivity on the zooplankton structure in floodplain lakes of a regulated large river (the lower Vistula, Poland). Water, 2019, 11 (9): 1924.
|
45 |
叶晓彤. 城市河湖连通水系轮虫与浮游细菌群落生态学研究[D]. 广州: 暨南大学, 2020.
|
46 |
戴秉国. 长江中下游江湖连通复合体鱼类Beta多样性研究[D]. 合肥: 安徽大学, 2020.
|
47 |
ZHANG C, LI M Z, CHANG T, et al.. The interaction processes of the fish assemblages between the Yangtze River and Poyang Lake, China. Ecology of Freshwater Fish, 2021, 30 (4): 541- 550.
|
48 |
SHAO X J, FANG Y, JAWITZ J W, et al.. River network connectivity and fish diversity. Science of the Total Environment, 2019, 689, 21- 30.
|
49 |
尚坤钰, 姜明, 林鹏程, 等.. 江湖阻隔对长江中下游湖泊鱼类群落分类多样性的影响. 水生生物学报, 2023, 47 (1): 133- 150.
|
50 |
LIU X Q, WANG H Z.. Effects of loss of lateral hydrological connectivity on fish functional diversity. Conservation Biology, 2018, 32 (6): 1336- 1345.
|
51 |
AMEZCUA F, RAJNOHOVA J, FLORES-DE-SANTIAGO F, et al.. The effect of hydrological connectivity on fish assemblages in a floodplain system from the south-east gulf of California, Mexico. Frontiers in Marine Science, 2019, 6, 240.
|
52 |
PRADO P, ALCARAZ C, JORNET L, et al.. Effects of enhanced hydrological connectivity on Mediterranean salt marsh fish assemblages with emphasis on the endangered Spanish toothcarp (Aphanius iberus). PeerJ, 2017, 5, e3009.
|
53 |
GUO C B, CHEN Y S, GOZLAN R E, et al.. Patterns of fish communities and water quality in impounded lakes of China’s south-to-north water diversion project. Science of the Total Environment, 2020, 713, 136515.
|
54 |
WANG C C, ZHOU X D, XU M Z, et al.. Evaluating the ecological health of aquatic habitats in a megacity through a multimetric index model based on macroinvertebrates. Ecological Indicators, 2023, 150, 110235.
|
55 |
董芮, 王玉玉, 吕偲, 等.. 水文连通性对西洞庭湖大型底栖动物群落结构的影响. 生态学报, 2020, 40 (22): 8336- 8346.
|
56 |
DOU P, XIE T, LI S Z, et al.. A network perspective to evaluate hydrological connectivity effects on macroinvertebrate assemblages. Wetlands, 2020, 40 (6): 2837- 2848.
|
57 |
OBOLEWSKI K, STRZELCZAK A, GLIŃSKA-LEWCZUK K.. Does hydrological connectivity affect the composition of macroinvertebrates on Stratiotes aloides L. in oxbow lakes?. Ecological Engineering, 2014, 66, 72- 81.
|
58 |
DONG R, WANG Y Y, LU C, et al.. The seasonality of macroinvertebrate β diversity along the gradient of hydrological connectivity in a dynamic river-floodplain system. Ecological Indicators, 2021, 121, 107112.
|
59 |
ZHOU X D, XU M Z, KATTEL G, et al.. Channel abandonment alters trophic characteristics of highland rivers. Water Research, 2023, 230, 119590.
|