1 |
PRINGSHEIM P.. Zwei bemerkungen über den unterschied von lumineszenz- und temperaturstrahlung. Zeitschrift für Physik, 1929, 57, 739- 746.
|
2 |
DJEU N, WHITNEY W T.. Laser cooling by spontaneous anti-Stokes scattering. Physical Review Letters, 1981, 46 (4): 236- 239.
|
3 |
SHEIK-BAHAE M, EPSTEIN R I.. Optical refrigeration. Nature Photonics, 2007, 1 (12): 693- 699.
|
4 |
SELETSKIY D V, Melgaard S D, BIGOTTA S, et al.. Laser cooling of solids to cryogenic temperatures. Nature Photonics, 2010, 4 (3): 161- 164.
|
5 |
EPSTEIN R I, BUCHWALD M I, EDWARDS B C, et al.. Observation of laser-induced fluorescent cooling of a solid. Nature, 1995, 377 (6549): 500- 503.
|
6 |
PATTERSON W M, STARK P C, YOSHIDA T M, et al.. Preparation and characterization of high-purity metal fluorides for photonic applications. Journal of the American Ceramic Society, 2011, 94 (9): 2896- 2901.
|
7 |
VOGL U, WEITZ M.. Laser cooling by collisional redistribution of radiation. Nature, 2009, 461 (7260): 70- 73.
|
8 |
THIEDE J, DISTEL J, GREENFIELD S R, et al. Cooling to 208 K by optical refrigeration [J]. Applied Physics Letters, 2005, 86(15): 154107.
|
9 |
DONG G Z, MA Y X, ZHAO X, et al. Model for optical refrigeration of Ho3+-doped fluoride crystals [J]. Journal of the Optical Society of America B, 2022, 39(12): 195-3199.
|
10 |
ZHANG J, LI D H, CHEN R J, et al.. Laser cooling of a semiconductor by 40 Kelvin. Nature, 2013, 493 (7433): 504- 508.
|
11 |
CHANG H N, ZHANG J.. Refrigeration technologies of cryogenic chips. Chip, 2023, 2(3), 100054.
|
12 |
ZHONG B, YIN J, JIA Y H et al. Laser cooling of Yb3+-doped LuLiF4 crystal [J]. Optics Letters, 2014, 39(9): 2747-2750.
|
13 |
ZHONG B, LEI Y Q, LUO H, et al. Laser cooling of the Yb3+-doped LuLiF4 single crystal for optical refrigeration [J]. Journal of Luminescence, 2020, 226: 117472.
|
14 |
MOBINI E, ROSTAMI S, PEYSOKHAN M, et al. Laser cooling of ytterbium-doped silica glass [J]. Communications Physics, 2020(3): 134.
|
15 |
BIGOTTA S, PARISI D, BONELLI L, et al.. Laser cooling of Yb3+-doped BaY2F8 single crystal. Optical Materials, 2006, 28 (11): 1321- 1324.
|
16 |
HEHLEN M P, EPSTEIN R I, INOUE H. Model of laser cooling in theYb3+-doped fluorozirconate glass ZBLAN [J]. Physical Review B, 2007, 75(14): 144302.
|
17 |
SELETSKIY D V, MELGAARD S D, EPSTEIN R I, et al. Local laser cooling of Yb:YLF to 110 K [J]. Optics Express, 2011, 19(19): 18229-18236.
|
18 |
MELGAARD S D, SELETSKIY D V, DI LIETO A, et al. Optical refrigeration to 119 K, below National Institute of Standards and Technology cryogenic temperature [J]. Optics Letters, 2013, 38(9): 1588-1590.
|
19 |
MELGAARD S D, ALBRECHTt A R, HEHLEN M P, et al.. Solid-state optical refrigeration to sub-100 Kelvin regime. Scientific Reports, 2016, 6 (1): 20380.
|
20 |
LEI Y Q, ZHONG B, YANG T, et al. Laser cooling of Yb3+:LuLiF4 crystal below cryogenic temperature to 121 K [J]. Applied Physics Letters, 2022, 120(23): 231101.
|
21 |
DONG G Z, ZHANG X L, LI L. Energy transfer enhanced laser cooling in Ho3+ and Tm3+-codoped lithium yttrium fluoride [J]. Journal of the Optical Society of America B, 2013, 30(4): 939-944.
|
22 |
DONG G Z, ZHANG X L, CUI J H. Double-pulse excitation scheme for laser cooling of solids in the superradiance regime [J]. Journal of the Optical Society of America B, 2015, 32(2): 324-330.
|
23 |
DONG G Z, ZOU K S, LIU J C. Efficient optical refrigeration in Yb3+:YLiF4 at cryogenic temperatures via pulsed excitation [J]. Journal of the Optical Society of America B, 2018, 35(7): 1570-1577.
|
24 |
HEHLEN M P, MENG J, ALBRECHT A R, et al. First demonstration of an all-solid-state optical cryocooler [J]. Light: Science & Applications, 2018, 7(1): 15.
|
25 |
KOCK J L, ALBRECHT A R, EPSTEIN R I, et al. Optical refrigeration of payloads to T < 125 K [J]. Optics Letters, 2022, 47(18): 4720-4723.
|
26 |
KNALL J M, ENGHOLM M, BOILARD T, et al. Radiation-balanced silica fiber laser [J]. Optica, 2021, 8(6): 830-833.
|
27 |
EPSTEIN R I, SELETSKIY D V, SHEIK-BAHAE M, et al. Laser cooling of a semiconductor load using a Yb:YLF optical refrigerator [J]. Proceedings of SPIE, Laser Refrigeration of Solids III, 2010, 7614: 761409.
|
28 |
MELGAARD S D. Cryogenic optical refrigeration: Laser cooling of solids below 123 K [D]. Albuquerque, NM, USA: The University of New Mexico, 2013.
|
29 |
VOLPI A, MENG J W, GRAGOSSIAN A, et al. Optical refrigeration: The role of parasitic absorption at cryogenic temperatures [J]. Optics Express, 2019, 27(21): 29710-29718.
|
30 |
SELETSKIY D V, EPSTEIN R, SHEIK-BAHAE M.. Laser cooling in solids: Advances and prospects. Reports on Progress in Physics, 2016, 79 (9): 096401.
|
31 |
CITTADINO G, VOLPI A, DI LIETO A, et al. Co-doping of LiYF4 crystal: A virtuous effect of cooling efficiency [J]. Journal of Physics D, 2018, 51(14): 145302.
|
32 |
IMANGHOLI B, HEMNEBERGER F, Bender D A, et al. Differential luminescence thermometry in semiconductor laser cooling [C]// Proceedings Volume 6115, Physics and Simulation of Optoelectronic Devices XIV. SPIE, 2006: 61151C.
|
33 |
GRATAN K T, ZHANG Z. Fiber optic fluorescence thermometry [G]// Topics in Fluorescence Spectroscopy vol 4: Probe Design and Chemical Sensing. Boston: Springer, 1995: 335-376.
|
34 |
DEMIRBAS U, THESINGA J, KELLERT M, et al. Comparison of different in situ optical temperature probing techniques for cryogenic Yb: YLF [J]. Optical Materials Express, 2020, 10(12): 145302.
|
35 |
DEMIRBAS U, THESINGA J, KELLERT M, et al. Error analysis of contactless optical temperature probing methods for cryogenic Yb:YAG [J]. Applied Physics B, 2021, 127(8): 112.
|
36 |
ISLAM N. Ligand-field transitions in tetrahedral tetrabromo-iron(III) complex ions in molten tetra-n-butylphosphonium bromide [J]. Applied Spectroscopy, 1974, 28(3): 277-278.
|
37 |
PAGE R H, GUDEMAN C S. Completing the iron period: Double-resonance, fluorescence-dip Rydberg spectroscopy and ionization potentials of titanium, vanadium, iron, cobalt, and nickel [J]. Journal of the Optical Society of America B, 1990, 7(9): 1761-1771.
|
38 |
ROUSSOS G, SCHULZ H J, THIEDE M. Luminescence and related optical properties of iron ions in II-VI compounds [J]. Journal of Luminescence, 1984, 31/32: 409-411.
|
39 |
WOOD D L, FERGUSON J, KNOX K, et al.. Crystal-field spectra of $ d^{3.7} $ions. III. spectrum of Cr3+ in various octahedral crystal fields. The Journal of Chemical Physics, 1963, 39 (4): 890- 898.
|