1 |
蒋多, 何贵兵.. 心理距离视角下的行为决策. 心理科学进展, 2017, 25 (11): 1992-2001.
|
2 |
OSBORNE M J. A Course in Game Theory[M]. Cambridge, MA, USA : MIT Press, 1994.
|
3 |
王鸢清, 袁晓劲.. 心理学对经济学的涉入——从理性自利到社会偏好的决策框架. 心理学探新, 2022, 42 (4): 291- 296.
|
4 |
汪新建.. 何以“治心”——兼论心理学如何服务社会治理. 南京师范大学学报(社会科学版), 2021, (4): 71- 79.
|
5 |
廖丽.. 国际知识产权制度的发展趋势及中国因应——基于博弈论的视角. 法学评论, 2023, (2): 187.
|
6 |
刘俊, 王超, 陈津莼, 等.. 基于博弈论的城镇能源互联网多市场主体收益模型. 电力系统自动化, 2019, 43 (14): 90- 96,104.
|
7 |
BARABÁSI A L.. The origin of bursts and heavy tails in human dynamics. Nature, 2005, 435 (7039): 207- 211.
|
8 |
GONZÁLEZ M C, HIDALGO C A, BARABÁSI A L.. Understanding individual human mobility patterns. Nature, 2008, 453 (7196): 779- 782.
|
9 |
RYBSKI D, BULDYREV S V, HAVLIN S, et al.. Scaling laws of human interaction activity. Proceedings of the National Academy of Sciences, 2009, 106 (31): 12640- 12645.
|
10 |
FRAIBERGER S P, SINATRA R, RESCH M, et al.. Quantifying reputation and success in art. Science, 2018, 362 (6416): 825- 829.
|
11 |
SHANNON C E.. XXII. Programming a computer for playing chess. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1950, 41 (314): 256- 275.
|
12 |
SIGMAN M, ETCHEMENDY P, SLEZAK D F, et al.. Response time distributions in rapid chess: A large-scale decision making experiment. Frontiers in Neuroscience, 2010, 4, 60.
|
13 |
BLANSIU B, TÖNJES R.. Zipf’s law in the popularity distribution of chess openings. Physical Review Letters, 2009, 103 (21): 218701.
|
14 |
RIBEIRO H V, MENDES R S, LENZI E K, et al.. Move-by-move dynamics of the advantage in chess matches reveals population-level learning of the game. PLoS One, 2013, 8 (1): e54165.
|
15 |
PEROTTI J I, JO H H, SCHAIGORODSKY A L, et al.. Innovation and nested preferential growth in chess playing behavior. Europhysics Letters, 2013, 104 (4): 48005.
|
16 |
SCHAIGORODSKY A L, PEROTTI J I, BILLONI O V.. A study of memory effects in a chess database. PloS One, 2016, 11 (12): e0168213.
|
17 |
ALMEIRA N, SCHAIGORODSKY A L, PEROTTI J I, et al.. Structure constrained by metadata in networks of chess players. Scientific Reports, 2017, 7 (1): 15186.
|
18 |
XU L G, LI M X, ZHOU W X.. Weiqi games as a tree: Zipf’s Law of openings and beyond. Europhysics Letters, 2015, 110 (5): 58004.
|
19 |
GEORGEOT B, GIRAUD O.. The game of go as a complex network. Europhysics Letters, 2012, 97 (6): 68002.
|
20 |
COQUIDÉ C, GEORGEOT B, GIRAUD O.. Distinguishing humans from computers in the game of go: A complex network approach. Europhysics Letters, 2017, 119 (4): 48001.
|
21 |
CHOWDHARY S, IACOPINI I, BATTISTON F.. Quantifying human performance in chess. Scientific Reports, 2023, 13 (1): 2113.
|
22 |
GLICKMAN M E.. Chess rating systems. American Chess Journal, 1995, 3 (59): 102.
|
23 |
CLAUSET A, SHALIZI C R, NEWMAN M E J.. Power-law distributions in empirical data. SIAM Review, 2009, 51 (4): 661- 703.
|
24 |
BARABÁSI A L, ALBERT R.. Emergence of scaling in random networks. Science, 1999, 286 (5439): 509- 512.
|
25 |
MA Y G.. Application of information theory in nuclear liquid gas phase transition. Physical Review Letters, 1999, 83 (18): 3617.
|
26 |
QIAN J H, YANG C H, HAN D D, et al.. Multi-scaling mix and non-universality between population and facility density. Physica A, 2012, 391 (21): 5146- 5152.
|
27 |
QIAN J H, CHEN Q, HAN D D, et al.. Origin of Gibrat law in Internet: Asymmetric distribution of the correlation. Physical Review E, 2014, 89 (6): 062808.
|