华东师范大学学报(自然科学版) ›› 2025, Vol. 2025 ›› Issue (4): 134-146.doi: 10.3969/j.issn.1000-5641.2025.04.014
• • 上一篇
收稿日期:
2024-02-24
接受日期:
2024-04-12
出版日期:
2025-07-25
发布日期:
2025-07-19
通讯作者:
梁霞
E-mail:xliang@sklec.ecnu.edu.cn
基金资助:
Ziyan CHEN, Rongrong YANG, Yi WU, Lijun HOU, Xia LIANG*()
Received:
2024-02-24
Accepted:
2024-04-12
Online:
2025-07-25
Published:
2025-07-19
Contact:
Xia LIANG
E-mail:xliang@sklec.ecnu.edu.cn
摘要:
在实验室条件下设置不同生物炭和脱硫石膏施用比例, 并结合稳定同位素和分子生物学研究方法, 定量评估了生物炭和脱硫石膏混合添加对滨海盐碱土的改良效果及其对土壤氧化亚氮 (N2O) 排放的影响. 结果表明, 相较于生物炭和脱硫石膏单独添加处理, 两者混合施用后, 土壤碱化度(ESP)显著下降, 土壤有机碳含量明显增加. 混合施用后, 土壤N2O累积排放量下降了约127.7% (N2O由排放状态转为吸收状态), 这主要是由于混合施用显著提升了土壤硝化、反硝化潜力及N2O的还原消耗, 因此有效减少了土壤N2O排放. 研究结果为滨海盐碱土改良技术发展以及土壤温室气体减排管理提供数据支持和理论参考.
中图分类号:
陈子彦, 杨荣荣, 吴仪, 侯立军, 梁霞. 生物炭-脱硫石膏混合施用对滨海盐碱土改良和N2O减排效果评估[J]. 华东师范大学学报(自然科学版), 2025, 2025(4): 134-146.
Ziyan CHEN, Rongrong YANG, Yi WU, Lijun HOU, Xia LIANG. Evaluation of biochar-desulfurized gypsum mixed application on saline-alkali soil improvement and N2O emission reduction in coastal areas[J]. J* E* C* N* U* N* S*, 2025, 2025(4): 134-146.
表2
目标基因的引物序列及PCR条件"
目标基因 | 引物 | 序列 (5'-3') | 参考文献 | PCR 条件 |
AOA- amoA | Arch-amoAF | STAATGGTCTGGCTTAGACG | [ | 50 ℃ for 2 min, 95 ℃ for 10 min, 45 × [95 ℃ for 30 s, 58℃ for 40 s, 72 ℃ for 1min] |
Arch-amoAR | GCGGCCATCCATCTGTATGT | |||
AOB- amoA | amoA-2R | CCCCTCKGSAAAGCCTTCTTC | [ | 50 ℃ for 2 min, 95 ℃ for 10 min, 45 × [95 ℃ for 30 s, 56℃ for 40 s, 72 ℃ for 1min] |
amoA-1F | GGGGTTTCTACTGGTGGT | |||
nirS | cd3aF | GTSAACGTSAAGGARACSGG | [ | 50 ℃ for 2 min, 95 ℃ for 10 min, 45 × [95 ℃ for 30 s, 58℃ for 40 s, 72 ℃ for 1min] |
R3cd | GASTTCGGRTGSGTCTTGA | |||
nirK | nirK876 | ATYGGCGGVAYGGCGA | [ | 50 ℃ for 2 min, 95 ℃ for 10 min, 40 × [95 ℃ for 30 s, 57 ℃ for 15 s, 72 ℃ for 1min] |
nirK1040 | GCCTCGATCAGRTTRTGGTT | |||
nosZ | nosZ2F | CGCRACGGCAASAAGGTSMSSGT | [ | 50 ℃ for 2 min, 95 ℃ for 10 min, 45 × [95 ℃ for 30 s, 58℃ for 40 s, 72 ℃ for 1min] |
nosZ2R | CAKRTGCAKSGCRTGGCAGAA |
表3
实验结束后不同处理组土壤理化因子变化情况"
处理组 | pH | 电导率/ (ds·m–1) | 含水率/ % | 土壤容重/ (g·cm–3) | TN/ (g·kg–1) | TC/ (g·kg–1) | TOC/ (g·kg–1) | Cl–含量/ (mg·kg–1) | ESP/ % |
CK | 7.45±0.06 | 6.29±0.04 | 18.21±0.02 | 1.45±0.10 | 0.43±0 | 15.41±0.08 | 1.01±0.35 | 6.80±0.07 | 20.66±0.19 |
FGD | 7.08±0.04 | 6.30±0.16 | 20.13±0.01 | 1.38 ±0.02 | 0.42±0.02 | 14.34±0.05 | 1.35±0.14 | 4.65±0.03 | 16.67±0.21 |
BC | 7.46±0.07 | 3.87±0.10 | 20.65±0.03 | 1.33±0.03 | 0.87±0.02 | 32.86±1.02 | 20.60±1.46 | 5.61±0.03 | 16.16±0.25 |
BF1 | 7.15±0.04 | 4.17±0.04 | 20.60±0.04 | 1.32±0.11 | 0.84±0 | 32.01±0.23 | 19.46±0.98 | 5.61±0.04 | 12.99±0.14 |
BF2 | 7.18±0.05 | 5.95±0.08 | 20.81±0.03 | 1.31±0.09 | 0.82±0.01 | 31.29±0.21 | 24.82±0.56 | 5.35±0.10 | 12.03±0.15 |
BF3 | 7.12±0.03 | 5.80±0.12 | 21.31±0.12 | 1.29±0.06 | 0.74±0.01 | 28.10±0.25 | 24.97±0.76 | 4.89±0.02 | 11.58±0.22 |
表4
相关研究中单独施加生物炭的实验结果"
序号 | 土壤类型与利用方式 | 实验 周期 | 生物炭 施用量 | N2O排放量 降幅 | 主要作用机制 | 参考 文献 | ||||
土壤结构 | 生物炭吸附 | 硝化 过程 | 反硝化 过程 | 微生物群落 结构与活性 | ||||||
1 | 盐土 小麦 + 玉米轮作 | 49 d | 1% | 48% | √ | √ | √ | √ | [ | |
2 | 潮土 小麦 + 玉米轮作 | 4.5 a | 1% ~ 5% | 8.2% ~ 31% | √ | [ | ||||
3 | 碱性砂壤土 小麦 + 玉米轮作 | 5 a | 1% ~ 5% | 25% ~ 52% | √ | √ | √ | [ | ||
4 | 壤土 蔬菜轮作 | 1 a | 5% | 4.6% | √ | [ | ||||
5 | 黑垆土 小麦 + 豆科作物轮作 | 30 d | 10% | 12% | √ | √ | √ | [ | ||
6 | 砂壤土 玉米 | 2 a | 10% ~ 40% | 23% ~ 94% | √ | √ | √ | [ | ||
7 | 滨海盐土 盐生植被 | 90 d | 2% | 3.1% | √ | √ | √ | √ | √ | 本研究 |
8 | 滨海盐土 盐生植被 | 90 d | 2% (FGD 5%) | 127.7% | √ | √ | √ | √ | √ | 本研究 |
1 | CANFIELD D E, GLAZER A N, FALKOWSKI P G.. The evolution and future of Earth’s nitrogen cycle. Science, 2010, 330 (6001): 192- 196. |
2 | 刘鑫慧, 李雅颖, 郑宁国, 等.. 全球环境变化对土壤N2O排放影响的研究进展. 土壤通报, 2023, 54 (1): 213- 222. |
3 | IVUSHKIN K, BARTHOLOMEUS H, BREGT A K, et al.. Global mapping of soil salinity change. Remote Sensing of Environment, 2019, 231, 111260. |
4 | CUI Q, XIA J B, YANG H J, et al.. Biochar and effective microorganisms promote Sesbania cannabina growth and soil quality in the coastal saline-alkali soil of the Yellow River Delta, China. Science of the Total Environment, 2021, 756, 143801. |
5 | TANG J W, ZHANG S D, ZHANG X T, et al. Effects of pyrolysis temperature on soil-plant-microbe responses to Solidago canadensis L. -derived biochar in coastal saline-alkali soil [J]. Science of the Total Environment, 2020, 731: 138938. |
6 | 赵英, 王丽, 赵惠丽, 等.. 滨海盐碱地改良研究现状及展望. 中国农学通报, 2022, 38 (3): 67- 74. |
7 | UPASANA G, RESHAM T, THOMAS D, et al.. Saline–sodic soils: Potential sources of nitrous oxide and carbon dioxide emissions?. Pedosphere, 2017, 27 (1): 65- 75. |
8 | TANG J, LIANG S, LI Z Y, et al.. Emission laws and influence factors of greenhouse gases in saline-alkali paddy fields. Sustainability, 2016, 8 (2): 163. |
9 | YU H W, ZOU W X, CHEN J J, et al.. Biochar amendment improves crop production in problem soils: A review. Journal of Environmental Management, 2019, 232, 8- 21. |
10 | WANG S, LIAO P, CEN L, et al.. Biochar promotes arsenopyrite weathering in simulated alkaline soils: Electrochemical mechanism and environmental implications. Environmental Science & Technology, 2023, 57 (22): 8373- 8384. |
11 | AKHTAR S S, ANDERSEN M N, LIU F.. Biochar mitigates salinity stress in potato. Journal of Agronomy and Crop Science, 2015, 201 (5): 368- 378. |
12 | TAN H Y, ONG P Y, KLEMEŠ J J, et al.. Mitigation of soil salinity using biochar derived from lignocellulosic biomass. Chemical Engineering Transactions, 2021, 83, 235- 240. |
13 | YAVARI S, SAPARI N B, MALAKAHMAD A, et al.. Degradation of imazapic and imazapyr herbicides in the presence of optimized oil palm empty fruit bunch and rice husk biochars in soil. Journal of Hazardous Materials, 2019, 366, 636- 642. |
14 | YUAN J H, XU R K, QIAN W, et al.. Comparison of the ameliorating effects on an acidic ultisol between four crop straws and their biochars. Journal of Soils and Sediments, 2011, 11 (5): 741- 750. |
15 | WATTS D B, DICK W A.. Sustainable uses of FGD gypsum in agricultural systems: Introduction. Journal of Environmental Quality, 2014, 43 (1): 246- 252. |
16 | WANG P, LIU Q, FAN S, et al.. Combined application of desulfurization gypsum and biochar for improving saline-alkali soils: A strategy to improve newly reclaimed cropland in coastal mudflats. Land, 2023, 12 (9): 1717. |
17 | WANG P J, LIN X L, LIU Q, et al.. Interactions between flue gas desulfurization gypsum and biochar on water infiltration characteristics and physicochemical properties of saline-alkaline soil. Environmental Monitoring and Assessment, 2023, 195 (11): 1273. |
18 | ANDERSON C R, CONDRON L M, CLOUGH T J, et al.. Biochar induced soil microbial community change: Implications for biogeochemical cycling of carbon, nitrogen and phosphorus. Pedobiologia, 2011, 54 (5/6): 309- 320. |
19 | CAYUELA M L, SÁNCHEZ-MONEDERO M A, ROIG A, et al.. Biochar and denitrification in soils: When, how much and why does biochar reduce N2O emissions?. Scientific Reports, 2013, 3, 1732. |
20 | LIU X R, SHI Y L, ZHANG Q W, et al.. Effects of biochar on nitrification and denitrification-mediated N2O emissions and the associated microbial community in an agricultural soil. Environmental Science and Pollution Research, 2021, 28 (6): 6649- 6663. |
21 | LAWRENCE N C, TENESACA C G, VANLOOCKE A, et al.. Nitrous oxide emissions from agricultural soils challenge climate sustainability in the US Corn Belt. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 (46): e2112108118. |
22 | WATTS D B, RUNION G B, DICK W A, et al.. Influence of gypsum and cover crop on greenhouse gas emissions in soybean cropping systems. Journal of Soil and Water Conservation, 2023, 78 (2): 154- 162. |
23 | MAO Y M, LI X P, DICK W A, et al.. Remediation of saline–sodic soil with flue gas desulfurization gypsum in a reclaimed tidal flat of Southeast China. Journal of Environmental Sciences, 2016, 45, 224- 232. |
24 | HE K, HE G, WANG C P, et al.. Biochar amendment ameliorates soil properties and promotes Miscanthus growth in a coastal saline-alkali soil. Applied Soil Ecology, 2020, 155, 103674. |
25 | WANG P, DENG X Z, ZHOU H M, et al.. Responses of urban ecosystem health to precipitation extreme: A case study in Beijing and Tianjin. Journal of Cleaner Production, 2018, 177, 124- 133. |
26 | ZHAO N, YUE T X, LI H, et al.. Spatio-temporal changes in precipitation over Beijing-Tianjin-Hebei region, China. Atmospheric Research, 2018, 202, 156- 168. |
27 | SUN T, SUN R H, KHAN M S, et al.. Urbanization increased annual precipitation in temperate climate zone: A case in Beijing-Tianjin-Hebei region of North China. Ecological Indicators, 2021, 126, 107621. |
28 | WANG L, YANG K, GAO C C, et al.. Effect and mechanism of biochar on CO2 and N2O emissions under different nitrogen fertilization gradient from an acidic soil. Science of the Total Environment, 2020, 747, 141265. |
29 | WANG L, GAO C C, YANG K, et al.. Effects of biochar aging in the soil on its mechanical property and performance for soil CO2 and N2O emissions. Science of the Total Environment, 2021, 782, 146824. |
30 | GAO D Z, HOU L J, LIU M, et al.. N2O emission dynamics along an intertidal elevation gradient in a subtropical estuary: Importance of N2O consumption. Environmental Research, 2022, 205, 112432. |
31 | PANG Y M, JI G D.. Biotic factors drive distinct DNRA potential rates and contributions in typical Chinese shallow lake sediments. Environmental Pollution, 2019, 254, 112903. |
32 | ZHENG Y L, JIANG X F, HOU L J, et al.. Shifts in the community structure and activity of anaerobic ammonium oxidation bacteria along an estuarine salinity gradient. Journal of Geophysical Research: Biogeosciences, 2016, 121 (6): 1632- 1645. |
33 | 鲍士旦. 土壤农化分析 [M]. 3版. 北京: 中国农业出版社, 2000. |
34 | YU H B, SONG Y H, XI B D, et al.. Denitrification potential and its correlation to physico-chemical and biological characteristics of saline wetland soils in semi-arid regions. Chemosphere, 2012, 89 (11): 1339- 1346. |
35 | KUROLA J, SALKINOJA-SALONEN M, AARNIO T, et al.. Activity, diversity and population size of ammonia-oxidising bacteria in oil-contaminated landfarming soil. FEMS Microbiology Letters, 2005, 250 (1): 33- 38. |
36 | HOU L J, ZHENG Y L, LIU M, et al.. Anaerobic ammonium oxidation (anammox) bacterial diversity, abundance, and activity in marsh sediments of the Yangtze Estuary. Journal of Geophysical Research: Biogeosciences, 2013, 118 (3): 1237- 1246. |
37 | LIANG X, WANG B L, GAO D Z, et al.. Nitrification regulates the spatiotemporal variability of N2O emissions in a eutrophic lake. Environmental Science & Technology, 2022, 56 (23): 17430- 17442. |
38 | LIU D W, FANG Y T, TU Y, et al.. Chemical method for nitrogen isotopic analysis of ammonium at natural abundance. Analytical Chemistry, 2014, 86 (8): 3787- 3792. |
39 | ZHU J, YU L F, BAKKEN L R, et al.. Controlled induction of denitrification in Pseudomonas aureofaciens: A simplified denitrifier method for dual isotope analysis in NO3 −. Science of the Total Environment, 2018, 633, 1370- 1378. |
40 | LEWICKA-SZCZEBAK D, LEWICKI M P, WELL R.. N2O isotope approaches for source partitioning of N2O production and estimation of N2O reduction–validation with the 15N gas-flux method in laboratory and field studies. Biogeosciences, 2020, 17 (22): 5513- 5537. |
41 | WU D, WELL R, CÁRDENAS L M, et al.. Quantifying N2O reduction to N2 during denitrification in soils via isotopic mapping approach: Model evaluation and uncertainty analysis. Environmental Research, 2019, 179, 108806. |
42 | ROTTHAUWE J H, WITZEL K P, LIESACK W.. The ammonia monooxygenase structural gene AmoA as a functional marker: Molecular fine-scale analysis of natural ammonia-oxidizing populations. Applied and Environmental Microbiology, 1997, 63 (12): 4704- 4712. |
43 | FRANCIS C A, ROBERTS K J, MICHAEL BEMAN J, et al.. Ubiquity and diversity of ammonia-oxidizing Archaea in water columns and sediments of the ocean. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102 (41): 14683- 14688. |
44 | THROBÄCK I N, ENWALL K, JARVIS Å, et al.. Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE. FEMS Microbiology Ecology, 2004, 49 (3): 401- 417. |
45 | HENRY S, BAUDOIN E, LÓPEZ-GUTIÉRREZ J C, et al.. Quantification of denitrifying bacteria in soils by nirK gene targeted real-time PCR. Journal of Microbiological Methods, 2004, 59 (3): 327- 335. |
46 | YIN G Y, HOU L J, LIU M, et al.. Effects of thiamphenicol on nitrate reduction and N2O release in estuarine and coastal sediments. Environmental Pollution, 2016, 214, 265- 272. |
47 | MCGEORGE W T.. Diagnosis and improvement of saline and alkaline soils. Soil Science Society of America Journal, 1954, 18, 348- 348. |
48 | LAIRD D, FLEMING P, WANG B Q, et al.. Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma, 2010, 158 (3/4): 436- 442. |
49 | YUAN Y H, CHEN H H, YUAN W Q, et al.. Is biochar-manure co-compost a better solution for soil health improvement and N2O emissions mitigation?. Soil Biology and Biochemistry, 2017, 113, 14- 25. |
50 | ZHANG A F, BIAN R J, PAN G X, et al.. Effects of biochar amendment on soil quality, crop yield and greenhouse gas emission in a Chinese rice paddy: A field study of 2 consecutive rice growing cycles. Field Crops Research, 2012, 127, 153- 160. |
51 | ZHANG A F, CUI L Q, PAN G X, et al. Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China [J]. Agriculture, Ecosystems & Environment, 2010, 139(4): 469-475. |
52 | FRENKEL H, GERSTL Z, ALPEROVITCH N.. Exchange-induced dissolution of gypsum and the reclamation of sodic soils. Journal of Soil Science, 1989, 40 (3): 599- 611. |
53 | AMEZKETA E, ARAGÜÉS R, GAZOL R.. Efficiency of sulfuric acid, mined gypsum, and two gypsum by-products in soil crusting prevention and sodic soil reclamation. Agronomy Journal, 2005, 97 (3): 983- 989. |
54 | WANG S J, CHEN Q, LI Y, et al.. Research on saline-alkali soil amelioration with FGD gypsum. Resources, Conservation and Recycling, 2017, 121, 82- 92. |
55 | AHMAD S, GHAFOOR A, AKHTAR M E, et al.. Implication of gypsum rates to optimize hydraulic conductivity for variable-texture saline–sodic soils reclamation. Land Degradation & Development, 2016, 27 (3): 550- 560. |
56 | LIAO R K, YU H L, LIN H, et al.. A quantitative study on three-dimensional pore parameters and physical properties of sodic soils restored by FGD gypsum and leaching water. Journal of Environmental Management, 2019, 248, 109303. |
57 | TAVAKKOLI E, UDDIN S, RENGASAMY P, et al.. Field applications of gypsum reduce pH and improve soil C in highly alkaline soils in southern Australia’s dryland cropping region. Soil Use and Management, 2022, 38 (1): 466- 477. |
58 | STEWART C E, ZHENG J Y, BOTTE J, et al.. Co-generated fast pyrolysis biochar mitigates green-house gas emissions and increases carbon sequestration in temperate soils. GCB Bioenergy, 2013, 5 (2): 153- 164. |
59 | MAUCIERI C, ZHANG Y, MCDANIEL M D, et al.. Short-term effects of biochar and salinity on soil greenhouse gas emissions from a semi-arid Australian soil after re-wetting. Geoderma, 2017, 307, 267- 276. |
60 | LIU K, FANG L P, LI F B, et al.. Sustainability assessment and carbon budget of chemical stabilization based multi-objective remediation of Cd contaminated paddy field. Science of the Total Environment, 2022, 819, 152022. |
61 | BAGGS E M.. Soil microbial sources of nitrous oxide: Recent advances in knowledge, emerging challenges and future direction. Current Opinion in Environmental Sustainability, 2011, 3 (5): 321- 327. |
62 | BUTTERBACH-BAHL K, BAGGS E M, DANNENMANN M, et al.. Nitrous oxide emissions from soils: How well do we understand the processes and their controls?. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2013, 368 (1621): 20130122. |
63 | 董成, 陈智勇, 谢迎新, 等.. 生物炭连续施用对农田土壤氮转化微生物及N2O排放的影响. 中国农业科学, 2020, 53 (19): 4024- 4034. |
64 | SUDDICK E C, SIX J.. An estimation of annual nitrous oxide emissions and soil quality following the amendment of high temperature walnut shell biochar and compost to a small scale vegetable crop rotation. Science of the Total Environment, 2013, 465, 298- 307. |
65 | CAYUELA M L, VAN ZWIETEN L, SINGH B P, et al. Biochar’s role in mitigating soil nitrous oxide emissions: A review and meta-analysis [J]. Agriculture, Ecosystems & Environment, 2014, 191: 5-16. |
66 | SHI Y L, LIU X R, ZHANG Q W.. Effects of combined biochar and organic fertilizer on nitrous oxide fluxes and the related nitrifier and denitrifier communities in a saline-alkali soil. Science of the Total Environment, 2019, 686, 199- 211. |
67 | HARTER J, EL-HADIDI M, HUSON D H, et al.. Soil biochar amendment affects the diversity of nosZ transcripts: Implications for N2O formation. Scientific Reports, 2017, 7 (1): 3338. |
68 | WU Z, ZHANG X, DONG Y B, et al.. Biochar amendment reduced greenhouse gas intensities in the rice-wheat rotation system: Six-year field observation and meta-analysis. Agricultural and Forest Meteorology, 2019, 278, 107625. |
69 | LIU Y J, BI Y C, XIE Y X, et al.. Successive straw biochar amendments reduce nitrous oxide emissions but do not improve the net ecosystem economic benefit in an alkaline sandy loam under a wheat–maize cropping system. Land Degradation & Development, 2020, 31 (7): 868- 883. |
[1] | 陈家明, 王世明, 杨荣荣, 陈子彦, 梁霞, 侯立军. 长江河口水体暗碳固定的温度适应性[J]. 华东师范大学学报(自然科学版), 2024, 2024(1): 104-112. |
[2] | 何 荣, 邓 兵, 杜金洲, 吴 莹. 长江中游天鹅洲沉积物重金属元素记录对流域人类活动的响应[J]. 华东师范大学学报(自然科学版), 2012, 2012(4): 173-180. |
[3] | 何 荣, 邓 兵, 杜金洲, 吴 莹. 长江中游天鹅洲沉积物重金属元素记录对流域人类活动的响应[J]. 华东师范大学学报(自然科学版), 0, (): 1-8. |
[4] | 李丽娜;陈振楼;许世远;毕春娟. 铜锌铅铬镍重金属在长江口滨岸带软体动物体内的富集[J]. 华东师范大学学报(自然科学版), 2005, 2005(3): 65-70. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||