华东师范大学学报(自然科学版) ›› 2025, Vol. 2025 ›› Issue (5): 76-86.doi: 10.3969/j.issn.1000-5641.2025.05.008

• 开源与人工智能在教育中的创新实践 • 上一篇    下一篇

基于知识点关系增强的静态认知诊断模型

梁恒贵1, 朱益辉2, 唐晓雯2, 朱命冬3,*()   

  1. 1. 贵州大学 管理学院, 贵阳 550025
    2. 华东师范大学 数据科学与工程学院, 上海 200062
    3. 河南工学院 计算机科学与技术学院, 河南 新乡 453003
  • 收稿日期:2025-06-27 出版日期:2025-09-25 发布日期:2025-09-25
  • 通讯作者: 朱命冬 E-mail:hackdong@126.com
  • 基金资助:
    国家自然科学基金 (62377012, 61802116); 河南省科技攻关项目(252102211028)

Static cognitive diagnosis model enhanced by knowledge point relations

Henggui LIANG1, Yihui ZHU2, Xiaowen TANG2, Mingdong ZHU3,*()   

  1. 1. School of Management, Guizhou University, Guiyang 550025, China
    2. School of Data Science and Engineering, East China Normal University, Shanghai 200062, China
    3. School of Computer Science and Technology, Henan Institute of Technology, Xinxiang, Henan 453003, China
  • Received:2025-06-27 Online:2025-09-25 Published:2025-09-25
  • Contact: Mingdong ZHU E-mail:hackdong@126.com

摘要:

认知诊断作为个性化教育的核心任务, 旨在通过学生历史答题记录评估其对知识点的掌握程度. 现有静态认知诊断模型通常依赖人工标注的关键知识点, 忽视题目中潜在关联的知识点及不同题目对知识点的侧重差异. 提出了一种基于知识点关联关系增强的静态认知诊断模型(Q-matrix Enhanced Neural Cognitive Diagnosis, QENCD), 通过构建知识点依赖关系和题目侧重信息优化题目-知识点关联向量, 并引入残差连接融合两者特征. 实验表明, QENCD模型在ASSIST09、ASSIST17和Junyi数据集上的性能表现均显著优于现有模型.

关键词: 认知诊断, 知识点关联, 注意力机制, 残差连接, 静态模型

Abstract:

Cognitive diagnosis, a core task in personalized education, aims to evaluate students’ mastery of knowledge points using historical response records. Existing static cognitive diagnosis models are typically based on manually annotated key knowledge points, ignoring potential correlations between knowledge points within items as well as differences in how items emphasize specific knowledge points. To address these limitations, this study proposes a static cognitive diagnosis model improved by knowledge point relations (Q-matrix Enhanced Neural Cognitive Diagnosis, QENCD) model. The model optimizes the item-knowledge point association vector by constructing knowledge point dependency relationships and item emphasis information, then integrating these features through residual connections. The experimental results showed that QENCD model significantly outperforms existing models on the ASSIST09, ASSIST17, and Junyi datasets significantly outperforming state-of-the-art baselines. This study provides a more precise knowledge modeling method for static cognitive diagnosis.

Key words: cognitive diagnosis, knowledge point correlation, attention mechanism, residual connection, static model

中图分类号: