华东师范大学学报(自然科学版) ›› 2025, Vol. 2025 ›› Issue (5): 109-124.doi: 10.3969/j.issn.1000-5641.2025.05.011

• 开源生态发展与治理 • 上一篇    

开源协同结构建模与多层网络链路预测方法

赵普1(), 彭庆喜1,*(), 张雨昂2, 金协杰1, 赵德洲3   

  1. 1. 武汉学院 信息工程学院, 武汉 430210
    2. 中国地质大学(武汉) 地理与信息工程学院, 武汉 430078
    3. 枣庄技师学院 基础教学部, 山东 枣庄 277000
  • 收稿日期:2025-06-27 接受日期:2025-07-31 出版日期:2025-09-25 发布日期:2025-09-25
  • 通讯作者: 彭庆喜 E-mail:zhaopu_2025@qq.com;695979317@qq.com
  • 作者简介:赵 普, 男, 硕士, 助教, 研究方向为复杂网络、开源生态分析. E-mail: zhaopu_2025@qq.com
  • 基金资助:
    湖北省高校优秀中青年科技创新团队 (T2022055); 湖北一丹大学教育发展基金会科研基金 (JJA202509); 湖北省教育厅科学研究计划指导性项目 (B2024360)

Open-source collaboration structure modeling and multilayer-network link-prediction methods

Pu ZHAO1(), Qingxi PENG1,*(), Yuang ZHANG2, Xiejie JIN1, Dezhou ZHAO3   

  1. 1. School of Information Engineering, Wuhan College, Wuhan 430210, China
    2. School of Geography and Information Engineering, China University of Geosciences, Wuhan 430078, China
    3. Ministry of Basic Education, Zaozhuang Technician College, Zaozhuang, Shandong 277000, China
  • Received:2025-06-27 Accepted:2025-07-31 Online:2025-09-25 Published:2025-09-25
  • Contact: Qingxi PENG E-mail:zhaopu_2025@qq.com;695979317@qq.com

摘要:

开源生态中项目间协同关系日益复杂, 涵盖依赖共现、语言一致与开发者共享等多维复用机制. 传统图模型难以统一表达此类异构结构, 限制了对潜在协作关系的识别能力. 面向开源场景, 提出了一种基于多层图结构建模与结构融合链路预测方法相结合的分析框架. 通过构建包含3类协同层的无权多层网络, 并设计结构重合度调节与社群差异性评分机制, 来增强模型的结构感知与语义解释能力. 实验结果表明, 该方法在多个真实数据集上均优于现有主流链路预测算法, 尤其在结构异质性强的开源网络中表现显著. 进一步分析显示, 模型预测结果具备良好的社群一致性与语义可还原性. 研究表明, 该方法能够有效识别开源项目间潜在协同路径, 并为复用结构建模与社群分析提供结构性支撑.

关键词: 开源协同网络, 多层网络建模, 链路预测, 社群识别

Abstract:

Collaborative relationships among open-source projects are becoming increasingly complex, involving multiple reuse mechanisms such as dependency co-usage, language consistency, and contributor overlap. Traditional graph models struggle to represent these heterogeneous structures in a unified manner, limiting their ability to identify potential collaboration links. This paper proposes an analytical framework that integrates multilayer graph modeling with structure-aware link prediction, tailored to open-source ecosystems. A three-layer unweighted graph is constructed to capture different types of collaborations, and two structural enhancements—layer overlap modulation and community-aware scoring—are introduced to improve structural perception and semantic interpretability. Experimental results on multiple real-world datasets show that the proposed method consistently outperforms mainstream link prediction algorithms, particularly in networks with high structural heterogeneity. Further analysis reveals that the predicted links exhibit strong community consistency and semantic recoverability. Overall, the proposed approach effectively uncovers latent collaboration paths among open-source projects and provides structural support for reuse modeling and community evolution analysis.

Key words: open-source collaboration network, multilayer network modeling, link prediction, community detection

中图分类号: