1 |
MARTÍNEZ V, BERZAL F, CUBERO J C.. A survey of link prediction in complex networks. ACM Computing Surveys, 2017, 49 (4): 1- 33.
|
2 |
WANG X, JI H Y, SHI C, et al. Heterogeneous graph attention network [C]// The World Wide Web Conference. ACM, 2019: 2022-2032.
|
3 |
NAJARI S, SALEHI M, RANJBAR V, et al.. Link prediction in multiplex networks based on interlayer similarity. Physica A: Statistical Mechanics and Its Applications, 2019, 536, 120978.
|
4 |
FU X Y, ZHANG J N, MENG Z Q, et al. MAGNN: Metapath aggregated graph neural network for heterogeneous graph embedding [C]// Proceedings of The Web Conference 2020. ACM, 2020: 2331-2341.
|
5 |
XIONG H, YAN J C, PAN L. Contrastive multi-view multiplex network embedding with applications to robust network alignment [C]// Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. ACM, 2021: 1913-1923.
|
6 |
MISHRA S, SINGH S S, KUMAR A, et al. HOPLP − MUL: Link prediction in multiplex networks based on higher order paths and layer fusion [J]. Applied Intelligence, 2023, 53(3): 3415-3443.
|
7 |
CHAI L, TU L L, WANG X J, et al.. Hypergraph modeling and hypergraph multi-view attention neural network for link prediction. Pattern Recognition, 2024, 149, 110292.
|
8 |
ZHAO P, YOU L, WANG M, et al.. Multilayer network link prediction considering multiple correlation features. Expert Systems with Applications, 2025, 285, 127700.
|
9 |
LYULINA E, JAHANSHAHI M. Building the collaboration graph of open-source software ecosystem [C]// 2021 IEEE/ACM 18th International Conference on Mining Software Repositories (MSR). IEEE, 2021: 618-620.
|
10 |
MORADI-JAMEI B, KRAMER B L, CALDERÓN J B S, et al. Community formation and detection on GitHub collaboration networks [C]// Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. ACM, 2021: 244-251.
|
11 |
AGROSKIN A, LYULINA E, TITOV S, et al. Constructing temporal networks of OSS programming language ecosystems [C]// 2023 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE, 2023: 663-667.
|
12 |
MATRAGKAS N, WILLIAMS J R, KOLOVOS D S, et al. Analysing the ‘biodiversity’ of open source ecosystems: The GitHub case [C]// Proceedings of the 11th Working Conference on Mining Software Repositories. ACM, 2014: 356-359.
|
13 |
林海铭, 田春岐, 王伟. 基于二分网络表示学习的开源项目推荐方法 [J]. 计算机科学与应用, 2022, 12(1): 54-62.
|
14 |
ORIOL M, MÜLLER C, MARCO J, et al. Comprehensive assessment of open source software ecosystem health [J]. Internet of Things, 2023, 22: 100808.
|
15 |
SUN W J, IWUCHUKWU S, ALI BANGASH A, et al. An empirical study to investigate collaboration among developers in open source software (OSS) [C]// 2023 IEEE/ACM 20th International Conference on Mining Software Repositories (MSR). IEEE, 2023: 352-356.
|
16 |
连薛超, 刘维, 王清帅, 等. 面向高冲突事务处理的架构设计和优化[J]. 华东师范大学学报 (自然科学版), 2023(6): 28-38.
|
17 |
XIA X Y, ZHAO S Y, HAN F Y, et al. OpenDigger: Data mining and information service system for open collaboration digital ecosystem [EB/OL]. (2023-11-26)[2025-06-26]. https://arxiv.org/abs/2311.15204.
|
18 |
PRANA G A A, SHARMA A, SHAR L K, et al.. Out of sight, out of mind? How vulnerable dependencies affect open-source projects. Empirical Software Engineering, 2021, 26 (4): 59.
|
19 |
MONTANDON J E, VALENTE M T, SILVA L L.. Mining the technical roles of GitHub users. Information and Software Technology, 2021, 131, 106485.
|
20 |
LI W, MENG N, LI L, et al. Understanding language selection in multi-language software projects on GitHub [C]// 2021 IEEE/ACM 43rd International Conference on Software Engineering: Companion Proceedings (ICSE-Companion). IEEE, 2021: 256-257.
|
21 |
ZHANG Y, WU Y W, CHEN T T, et al. How do developers talk about GitHub actions? evidence from online software development community [C]// Proceedings of the IEEE/ACM 46th International Conference on Software Engineering. ACM, 2024: 1-13.
|
22 |
蒲秋梅, 席作新, 黄丽蓉, 等. 基于 GitHub 的用户影响力评估算法 [J]. 中南民族大学学报(自然科学版), 2023, 42(5): 672-677.
|
23 |
王明宇, 宫庆媛, 瞿晶晶, 等. 基于机器学习的 GitHub 企业影响力分析与预测 [J]. 智能科学与技术学报, 2023, 5(3): 330-342.
|
24 |
郑阳, 郑丽伟, 牟永敏. prAMD: 一种 GitHub pull-request 协作机制自动设计方法 [J]. 计算机应用与软件, 2024, 41(9): 9-16.
|
25 |
CAO Y L, CHEN L, MA W, et al.. Towards better dependency management: A first look at dependency smells in Python Projects. IEEE Transactions on Software Engineering, 2023, 49 (4): 1741- 1765.
|
26 |
DABIC O, AGHAJANI E, BAVOTA G. Sampling projects in GitHub for MSR studies [C]// 2021 IEEE/ACM 18th International Conference on Mining Software Repositories (MSR). IEEE, 2021: 560-564.
|
27 |
CALEFATO F, GEROSA M A, IAFFALDANO G, et al.. Will you come back to contribute? Investigating the inactivity of OSS core developers in GitHub. Empirical Software Engineering, 2022, 27 (3): 76.
|
28 |
SAROAR S G, NAYEBI M. Developers’ perception of GitHub actions: A survey analysis [C]// Proceedings of the 27th International Conference on Evaluation and Assessment in Software Engineering. ACM, 2023: 121-130.
|
29 |
ARRAR D, KAMEL N, LAKHFIF A.. A comprehensive survey of link prediction methods. The Journal of Supercomputing, 2024, 80 (3): 3902- 3942.
|
30 |
DANTAS SILVA F S, LIMA M P S, CORUJO D, et al.. A comprehensive step-wise survey of multiple attribute decision-making mobility approaches. IEEE Access, 2024, 12, 108616- 108656.
|
31 |
GAO M Z, JIAO P F, LU R L, et al. Inductive link prediction via interactive learning across relations in multiplex networks [J]. IEEE Transactions on Computational Social Systems, 2024, 11(3): 3118-3130.
|
32 |
COSCIA M, SZELL M.. Multilayer graph association rules for link prediction. Proceedings of the International AAAI Conference on Web and Social Media, 2021, 15, 129- 139.
|
33 |
TANG R, CHEN X S, WEI C C, et al.. Interlayer link prediction based on multiple network structural attributes. Computer Networks, 2022, 203, 108651.
|
34 |
JALILI M, OROUSKHANI Y, ASGARI M, et al.. Link prediction in multiplex online social networks. Royal Society Open Science, 2017, 4 (2): 160863.
|
35 |
ROZEMBERCZKI B, ALLEN C, SARKAR R.. Multi-Scale attributed node embedding. Journal of Complex Networks, 2021, 9 (2): cnab014.
|
36 |
CARRINGTON A M, MANUEL D G, FIEGUTH P W, et al.. Deep ROC analysis and AUC as balanced average accuracy, for improved classifier selection, audit and explanation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45 (1): 329- 341.
|
37 |
YACOUBY R, AXMAN D. Probabilistic extension of precision, recall, and F1 score for more thorough evaluation of classification models [C]// Proceedings of the First Workshop on Evaluation and Comparison of NLP Systems. Stroudsburg, PA, USA: ACL, 2020: 79-91.
|