华东师范大学学报(自然科学版) ›› 2025, Vol. 2025 ›› Issue (6): 14-18.doi: 10.3969/j.issn.1000-5641.2025.06.002

• • 上一篇    下一篇

态空间上度量的有限性与有界性

龙波涛1(), 沈文涛1, 梁月亮2   

  1. 1. 南京航空航天大学 数学学院, 南京 211106
    2. 中北大学 数学学院, 太原 030051
  • 收稿日期:2024-03-27 出版日期:2025-11-25 发布日期:2025-11-29
  • 作者简介:龙波涛, 男, 讲师, 研究方向为算子代数. E-mail: longbt289@nuaa.edu.cn
  • 基金资助:
    山西省回国留学人员科研教研资助项目 (2022-148)

Finiteness and boundedness of metrics on state spaces

Botao LONG1(), Wentao SHEN1, Yueliang LIANG2   

  1. 1. School of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
    2. School of Mathematics, North University of China, Taiyuan 030051, China
  • Received:2024-03-27 Online:2025-11-25 Published:2025-11-29

摘要:

给出了Rieffel在Banach空间框架下定义的度量的有限性与有界性等价的一个充分条件, 并从几个角度刻画了$ C^*{\text{-}}$代数态空间上度量的有界性.

关键词: 态空间, 度量, 有限性, 有界性

Abstract:

We provide a sufficient condition under which the finiteness and boundedness of metrics, as defined by Rieffel within the framework of Banach spaces, are equivalent. Additionally, we characterize the boundedness of metrics on the state spaces of $C^*{\text{-}} $algebras from multiple perspectives.

Key words: state space, metric, finiteness, boundedness

中图分类号: