华东师范大学学报(自然科学版) ›› 2005, Vol. 2005 ›› Issue (1): 16-22.

• 数学 统计学 • 上一篇    下一篇

二维准地转流的非线性稳定性及扰动发展

李娜,刘永明   

  1. 华东师范大学 数学系, 上海 200062
  • 收稿日期:2003-04-11 修回日期:2003-06-08 出版日期:2005-03-25 发布日期:2005-03-25
  • 通讯作者: 李娜

Nonlinear Stability of Two-dimentional Quasi- centerlinelargebf gestrophic Flow and Disturbance Development(Chinese)

LI Na, LIU Yong-ming   

  1. Department of Mathematics, East China Normal University, Shanghai 200062, China
  • Received:2003-04-11 Revised:2003-06-08 Online:2005-03-25 Published:2005-03-25
  • Contact: LI Na

摘要: 研究有界周期带域中的纬向对称二维一层准地转流,得到了现有最好的非线性稳定性定理, 对于Benzi模型,其结果与线性稳定性定理一致, 并且建立了关于扰动能量,扰动位涡拟能上界的精细的显式估计.

关键词: 二维准地转流, 扰动发展, 非线性稳定性, 二维准地转流, 扰动发展, 非线性稳定性

Abstract: We concerns with two-dimentional zonally symmetric one layer quasi-gestrophic flow in a bounded periodic zonal channel. A best nonlinear stability criterion is established for the flow. For Benzi’s model, the nonlinear stability criterion is shown identical to the linear one. Moreover, explicit rigorous upper bounds are obtained on both the disturbance energy and disturbance potential enstrophy.

Key words: disturbance development, nonlinear stability, two-dimentional quasi-gestrophic flow, disturbance development, nonlinear stability

中图分类号: