华东师范大学学报(自然科学版) ›› 2009, Vol. 2009 ›› Issue (1): 61-67.

• 应用数学与基础数学 • 上一篇    下一篇

高维鞍焦点同宿环的稳定性

黄璇1, 王丽英2   

  1. 1.井冈山大学数理学院, 江西 吉安 343009; 2. 张家口职业技术学院基础部, 河北张家口 075000
  • 收稿日期:2008-05-23 修回日期:2008-07-05 出版日期:2009-01-25 发布日期:2009-01-25
  • 通讯作者: 黄璇

Stability of homoclinic loops to saddle-focus with higher dimensions (Chinese)

HUANG Xuan1, WANG Li-ying2   

  1. 1. College of Mathematics &Physics,Jinggangshan University, Ji’anJiangxi 343009, China; 2. Department of Fundation, Zhangjiakou Vocational and Technical College, ZhangjiakouHebei 075000, China
  • Received:2008-05-23 Revised:2008-07-05 Online:2009-01-25 Published:2009-01-25
  • Contact: HUANG Xuan

摘要: 在给出了维数大于~3~的空间中连接鞍焦点的同宿环的稳定性定义的基础上,
对一类高维系统连接双曲鞍焦点的同宿环给出了稳定性判据.

关键词: 高维系统, 鞍焦点, 同宿环, 首次回归映射, 高维系统, 鞍焦点, 同宿环, 首次回归映射

Abstract: By establishing a new stability definition suitable for
the orbit homoclinic to a saddle-focus in a space with dimensions
larger than 3, the stability criterion was given for the homoclinic
orbit to a hyperbolic saddle-focus in a class of higher dimensional
systems.

Key words: saddle-focus, homoclinic loop, first recurrent map, higher dimensional system, saddle-focus, homoclinic loop, first recurrent map

中图分类号: