{1}GRIGGS J R, YEH R K. Labelling graphs with a condition at distancetwo[J]. SIAM J Discrete Math, 1992, 5(4): 586-595.{2}GEORGES J P, MAURO D W, STEIN M I. Labelling products of completegraphs with a condition at distance two[J]. SIAM J Discrete Math,2000, 14: 28-35.{3}GEORGES J P, MAURO D W, WHITTLESEY M A. Relating path coring tovertex labelling graphs with a condition at distance two[J].Discrete Math, 1994, 135: 103-111.{4}MOLLOY M, SALAVATIPOUR M R. A bound on the chromatic number of thesquare of a planar graph[J]. J Combin Theory Ser B, 2005, 94:189-213.{5}WANG W. The $L(2,1)$-labelling of trees[J]. Discrete Appl Math,2006, 154: 598-603.{6}WHITTLESEY M A, GEORGES J P, MAURO D W. On the $\lambda$-number of$Q_{n}$ and related graphs[J]. SIAM J Discrete Math, 1995, 8(4):449-506.{7}HAVET F, YU M L. $(p,1)$-Total labelling of graphs[J]. DiscreteMath, 2008, 308(4): 496-513.{8}HULGAN J. Concise proofs for adjacent-vertex distinguishing totalcolorings[J]. Discrete Math, 2009, 309(8): 2548-2550.{9}ZHANG Z F, CHEN X E, LI J W, et al. On the adjacent vertex stronglydistinguishing total coloring of graphs[J]. Science in China SerA-Math, 2008, 51(3): 427-436.{10}WANG W. Total chromatic number of planar graphs with maximum degreeten[J]. J Graph Theory, 2007, 54: 91-102.{11}CHEN X E, ZHANG Z F. Adjacent-vertex-distinguishing total chromaticnumber of $P_{m}\times K_{n}$[J]. Journal of Mathematical Researchand Exposition, 2006, 26(3): 489-494.{12}田京京. 若干圈的广义冠图的2-强边染色[J]. 数学杂志, 2011, 31(5):938-944.\\TIAN J J. The 2-strong edge-coloring of some general crown graphs ofcircle[J]. Journal of Math, 2011, 31(5): 938-944 (in chinese).{13}CHEN D, WANG W F. (2,1)-Total labelling of graphs[J]. DiscreteApplied Math, 2007, 155: 2585-2593. |