华东师范大学学报(自然科学版) ›› 2013, Vol. 2013 ›› Issue (2): 160-166.

• 数学 • 上一篇    

某类\,Finsler-Einstein\,空间之间的共形映射

张晓玲   

  1. 新疆大学~~数学与系统科学学院,~~乌鲁木齐 830046
  • 收稿日期:2012-04-01 修回日期:2012-07-01 出版日期:2013-03-25 发布日期:2013-03-20

Conformal transformation between some Finsler Einstein spaces

ZHANG Xiao-ling   

  1. College of Mathematics and Systems Science, Xinjiang University, Urumqi 830046, China
  • Received:2012-04-01 Revised:2012-07-01 Online:2013-03-25 Published:2013-03-20

摘要: Liouville\,定理证明了欧氏空间到自身的共形变换是莫比乌斯变换.
关于\,Riemann\,空间,Brinkmann \,首先得到了一般的结论.
但对\,Finsler\,空间的研究乏人问津.
本文运用导航术和共形映射的性质证明了\,Randers\,空间(或\,Kropina\,空间)之间保
Einstein度量的共形变换必是相似变换.

关键词: Einstein空间, 共形映射, Randers 度量, Kropina 度量

Abstract: Liouville's Theorem proved that the Euclidean space can be
mapped conformally on itself only by a composition of M\"{o}bius
transformations. For Riemann spaces, Brinkmann obtained general
results. Little work has been done on Finsler spaces. This paper, by
navigation idea and properties of conformal map, proved that the
conformal transformation between Einstein Randers (or Kropina)
spaces must be homothetic.

Key words: Einstein spaces, conformal maps, Randers metrics, Kropina metrics

中图分类号: