[1] LI B, YANG Q, XUE X. Can movies and books collaborate? Cross-domain collaborative filtering for sparsity reduction.[C]//Proceedings of the International Joint Conference on Artificial Intelligence.USA:DBLP, 2009:2052-2057. [2] CANTADOR I, FERNáNDEZ-TOBíAS I, BERKOVSKY S, et al. Cross-Domain Recommender Systems[M]//Recommender Systems Handbook. US:Springer, 2015:919-959. [3] ZHAO L, XIANG E W, XIANG E W, et al. Active transfer learning for cross-system recommendation[C]//Twenty-Seventh AAAI Conference on Artificial Intelligence. USA:AAAI Press, 2013:1205-1211. [4] PAN W, XIANG E W, YANG Q. Transfer learning in collaborative filtering with uncertain ratings[C]//TwentySixth AAAI Conference on Artificial Intelligence. USA:AAAI Press, 2012:662-668. [5] LI B. Cross-domain collaborative filtering:A brief survey[C]//IEEE, International Conference on TOOLS with Artificial Intelligence.[S.l.]:IEEE Computer Society, 2011:1085-1086. [6] 罗浩. 基于跨域信息推荐的算法研究[D]. 北京:北京邮电大学, 2014. [7] FERNÁNDEZ-TOB ÍAS I, CANTADOR I, KAMINSKAS M, et al. Cross-domain recommender systems:A survey of the State of the Art[C]//Proc 2nd Spanish Conf Inf Retrieval.[S.l.]:[S.n.], 2012:187-198. [8] LI B, YANG Q, XUE X. Transfer learning for collaborative filtering via a rating-matrix generative model[C]//International Conference on Machine Learning, ICML 2009. Canada:DBLP, 2009:617-624. [9] WINOTO P, TANG T. If you like the Devil Wears Prada the book, will you also enjoy the Dvil Wears Prada the movie? A study of cross-domain recommendations[J]. New Generation Computing, 2008, 26(3):209-225. [10] BERKOVSKY S, KUFLIK T, RICCI F. Mediation of user models for enhanced personalization in recommender systems[J]. User Modeling and User-Adapted Interaction, 2008, 18(3):245-286. [11] BERKOVSKY S, KUFLIK T, RICCI F. Cross-domain mediation in collaborative filtering[C]//User Modeling 2007, International Conference. Greece:DBLP, 2007:355-359. [12] SINGH, AJIT P, GORDON, et al. Relational learning via collective matrix factorization[J]. Relational Learning via Collective Matrix Factorization, 2008:650-658. [13] PAN W, YANG Q. Transfer learning in heterogeneous collaborative filtering domains[J]. Artificial Intelligence, 2013, 197(4):39-55. [14] XIN X, LIU Z, LIN C Y, et al. Cross-domain collaborative filtering with review text[C]//International Conference on Artificial Intelligence. USA:AAAI Press, 2015:1827-1833. [15] WEI C, HSU W, LEE M L. A unified framework for recommendations based on quaternary semantic analysis[C]//International ACM SIGIR Conference on Research and Development in Information Retrieval. New York:ACM, 2011:1023-1032. [16] ARORA A, TANEJA V, PARASHAR S, et al. Cross-domain based event recommendation using tensor factorization[J]. Open Computer Science, 2016, 6(1):32-37. [17] HU L, CAO J, XU G, et al. Personalized recommendation via cross-domain triadic factorization[J]. Proc 22nd Int World Wide Web Conf, 2014:595-606. [18] ZHOU G, HE Z, ZHANG Y, et al. Canonical polyadic decomposition:From 3-way to N-way[C]//Eighth International Conference on Computational Intelligence and Security.[S.l.]:IEEE, 2012:391-395. [19] SCHMITZ S K, HASSELBACH P P, EBISCH B, et al. Application of parallel factor analysis (PARAFAC) to electrophysiological data.[J]. Front Neuroinform, 2014(8):84. [20] KIERS H A L. An alternating least squares algorithm for PARAFAC2 and three-way DEDICOM[J]. Computational Statistics & Data Analysis, 1993, 16(1):103-118. [21] SONG T, PENG Z, WANG S, et al. Review-based cross-domain recommendation through joint tensor factorization[C]//Database Systems for Advanced Applications.[S.l.]:DASFAA, 2017:525-540. [22] LI H, LIN R, HONG R, et al. Generative models for mining latent aspects and their ratings from short reviews[C]//2015 IEEE International Conference on Data Mining. USA:IEEE, 2015:241-250. [23] JIANG M, CUI P, CHEN X, et al. Social recommendation with cross-domain transferable knowledge[J]. IEEE Transactions on Knowledge & Data Engineering, 2015, 27(11):3084-3097. [24] YANG D, HE J, QIN H, et al. A graph-based recommendation across heterogeneous domains[J]. 2016:1075-1080. [25] ZHANG J, YU P S. Multiple anonymized social networks alignment[C]//IEEE International Conference on Data Mining.[S.l.]:IEEE Computer Society, 2015:599-608. [26] KOUTRA D, TONG H, LUBENSKY D. BIG-ALIGN:Fast bipartite graph alignment[C]//IEEE International Conference on Data Mining.[S.l.]:IEEE, 2013:389-398. [27] LI C Y, LIN S D. Matching Users and Items Across Domains to Improve the Recommendation Quality[M]. New York:ACM, 2014:801-810. [28] SHI Y, LARSON M, HANJALIC A. Tags as bridges between domains:Improving recommendation with taginduced cross-domain collaborative filtering[C]//User Modeling, Adaption and Personalization, International Conference. USA:DBLP, 2011:305-316. [29] SALAKHUTDINOV R, MNIH A. Probabilistic matrix factorization[C]//International Conference on Neural Information Processing Systems. USA:Curran Associates, 2007:1257-1264. [30] DING C, LI T, PENG W, et al. Orthogonal nonnegative matrix t-factorizations for clustering[J]. Proc 12th ACM SIGKDD, 2006:126-135. [31] CHEN W, HSU W, LEE M L. Making recommendations from multiple domains[C]//ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. USA:ACM, 2013:892-900. [32] REN S, GAO S, LIAO J, et al. Improving cross-domain recommendation through probabilistic cluster-level latent factor model[C]//Twenty-Ninth AAAI Conference on Artificial Intelligence. USA:AAAI Press, 2015:4200-4201. [33] GAO S, LUO H, CHEN D, et al. Cross-domain recommendation via cluster-level latent factor model[C]//Proceedings, Part Ⅱ, of the European Conference on Machine Learning and Knowledge Discovery in Databases. New York:Springer-Verlag, 2013:161-176. [34] MORENO O, SHAPIRA B, ROKACH L, et al. TALMUD:transfer learning for multiple domains[C]//ACM International Conference on Information and Knowledge Management. New York:ACM, 2012:425-434. [35] CHUNG R, SUNDARAM D, SRINIVASAN A. Integrated personal recommender systems[C]//International Conference on Electronic Commerce:the Wireless World of Electronic Commerce. USA:DBLP, 2007:65-74. [36] SZOMSZOR M, ALANI H, CANTADOR I, et al. Semantic Modelling of User Interests Based on CrossFolksonomy Analysis[M]. Germany:Springer Berlin Heidelberg, 2008:632-648. [37] ABEL F, HERDER E, HOUBEN G J, et al. Cross-system user modeling and personalization on the social web[J]. User Modeling and User-Adapted Interaction, 2013, 23(2-3):169-209. [38] FERNÁNDEZ-TOBíAS I, CANTADOR I, PLAZA L. An emotion dimensional model based on social tags:Crossing folksonomies and enhancing recommendations[J]. Lecture Notes in Business Information Processing, 2013, 152:88-100. [39] BLEI D M, NG A Y, JORDAN M I. Latent dirichlet allocation[M]. J Mach Learn Res, 2003(3):993-1022. [40] KUMAR A, KUMAR N, HUSSAIN M, et al. Semantic clustering-based cross-domain recommendation[C]//Computational Intelligence and Data Mining.[S.l.]:IEEE, 2014:137-141. [41] LOIZOU A. How to recommend music to film buffs:Enabling the provision of recommendations from multiple domains[J]. University of Southampton, 2009. [42] KAMINSKAS M, RICCI F. A generic semantic-based framework for cross-domain recommendation[C]//International Workshop on Information Heterogeneity and Fusion in Recommender Systems. New York:ACM, 2011:25-32. [43] KAMINSKAS M, FERNÁNDEZ-TOB ÍAS I, CANTADOR I, et al. Ontology-Based Identification of Music for Places[M]//Information and Communication Technologies in Tourism. Germany:Springer Berlin Heidelberg, 2013:436-447. [44] HEITMANN B, HAYES C. SemStim at the LOD-RecSys 2014 Challenge[M]//Semantic Web Evaluation Challenge. Germany:Springer International Publishing, 2014:170-175. [45] JIANG M, CUI P, YUAN N J, et al. Little is much:bridging cross-platform behaviors through overlapped crowds[C]//Thirtieth AAAI Conference on Artificial Intelligence. USA:AAAI Press, 2016:13-19. [46] SHAPIRA B, ROKACH L, FREILIKHMAN S. Facebook single and cross domain data for recommendation systems[J]. User Modeling and User-Adapted Interaction, 2013, 23(2/3):211-247. [47] TIROSHI A, KUFLIK T. Domain Ranking for Cross Domain Collaborative Filtering[M]//User Modeling, Adaptation, and Personalization. Germany:Springer Berlin Heidelberg, 2012:328-333. [48] NAKATSUJI M, FUJIWARA Y, TANAKA A, et al. Recommendations over domain specific user graphs[C]//European Conference on Artificial Intelligence. USA:DBLP, 2010:607-612. [49] TIROSHI A, BERKOVSKY S, KAAFAR M A, et al. Cross social networks interests predictions based ongraph features[C]//ACM Conference on Recommender Systems. New York:ACM, 2013:319-322. [50] KRISHNAMURTHY B, PURI N, GOEL R. Learning vector-space representations of items for recommendations using word embedding models[J]. Procedia Computer Science, 2016, 80:2205-2210. [51] PEROZZI B, ALRFOU R, SKIENA S. Deepwalk:Online learning of social representations[C]//The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York:ACM, 2014:701-710. [52] GROVER A, LESKOVEC J. node2vec:Scalable feature learning for networks[C]//ACM SIGKDD International Conference. New York:ACM, 2016:855-864. [53] WANG D, CUI P, ZHU W. Structural deep network embedding[C]//ACM SIGKDD International Conference. New York:ACM, 2016:1225-1234. [54] TANG J, QU M, WANG M, et al. LINE:Large-scale information network embedding[C]//Proceedings of the 24th International Conference on World Wide Web.[S.l.]:International World Wide Web Conference Committee, 2015:1067-1077. [55] CAO S, LU W, XU Q. GraRep:Learning graph representations with global structural information[C]//Proceedings of the 24th ACM International Conference on Information and Knowledge Management. New York:ACM, 2015:891-900. [56] LI C, WANG S, YANG D, et al. PPNE:Property Preserving Network Embedding[C]//Database Systems for Advanced Applications,22nd International Conference.[S.l.]:DASFAA, 2017:163-179. [57] LI C, LI Z, WANG S, et al. Semi-supervised network embedding[C]//Database Systems for Advanced Applications, 22nd International Conference.[S.l.]:DASFAA, 2017:131-147. [58] 项亮.推荐系统实践[M]. 北京:人民邮电出版社, 2012. [59] SHANI G, GUNAWARDANA A. Evaluating Recommendation Systems[M]//Recommender Systems Handbook, 2011:257-297. [60] SAHEBI S, BRUSILOVSKY P. Cross-Domain Collaborative Recommendation in a Cold-Start Context:The Impact of User Profile Size on the Quality of Recommendation[M]. Germany:Springer,2013:289-295. |