[1] SHI Y, SUN C, LI Q, et al. A fraud resilient medical insurance claim system[C]//Thirtieth AAAI Conference on Artificial Intelligence. USA:AAAI Press, 2016:4393-4394. [2] XIE Z P, LI X Y, WU W Y, et al. An improved outlier detection algorithm to medical insurance[J]. IDEAL, 2016:436-444. [3] DIONNE G, GAGNé R. Replacement cost endorsement and opportunistic fraud in automobile insurance[J]. Journal of Risk & Uncertainty, 2002, 24(3):213-230. [4] SKIBA J M. A phenomenological study of the challenges and barriers facing insurance fraud investigators[J]. Journal of Insurance Regulation, 2013:131-136. [5] KRAUSE J H. A patient-centered approach to health care fraud recovery[J]. Journal of Criminal Law & Criminology, 2006, 96(2):579-619. [6] LORENZ F A. Healthcare fraud in the United States:Assessing current policy and its role in fraud prevention[J]. California State University Northridge, 2013:221-227. [7] 李亮. 基于成本-收益理论的社会医疗保险欺诈问题研究[D]. 长沙:湖南大学, 2011. [8] 王明慧, 陶四海. 我国大病医疗保险实施的影响因素分析[J]. 经营管理者, 2013, 21:298-298. [9] 夏宏, 汪凯, 张守春. 医疗保险中的欺诈与反欺诈问题[J]. 现代预防医学, 2007, 34(20):3907-3908. [10] COHEN W W. Fast effective rule induction[J]. Machine Learning Proceedings, 1995, 46(2):115-123. [11] BIAFORE S. Predictive solutions bring more power to decision makers[J]. Health Management Technology, 1999, 20(10):12. [12] MARCUSNEWHALL A, HALPERN D, TAN S J. Healthcare and data mining[J]. Health Management Technology, 2000. [13] 高臻耀, 张敬谊, 林志杰, 等. 一个医保基金风险防控平台中的数据挖掘技术[J]. 计算机应用与软件, 2011, 28(8):120-122. [14] ROBERTS S J, PENNY W, PILLOT D. Novelty, confidence and errors in connectionist systems[C]//Intelligent Sensors.[S.l.]:IET, 1996:10/1-10/6. [15] BREUNIG M M, KRIEGEL H P, NG R T, et al. OPTICS-OF:Identifying local outliers[J]. Lecture Notes in Computer Science, 1999, 1704:262-270. [16] 黄洪宇, 林甲祥, 陈崇成, 等. 离群数据挖掘综述[J]. 计算机应用研究, 2006, 23(8):8-13. [17] LIU B, YIN J, XIAO Y, et al. Exploiting local data uncertainty to boost global outlier detection[C]//IEEE International Conference on Data Mining.[S.l.]:IEEE Computer Society, 2010:304-313. [18] ESTER M, KRIEGEL H P, XU X. A density-based algorithm for discovering clusters a density-based algorithm for discovering clusters in large spatial databases with noise[C]//International Conference on Knowledge Discovery and Data Mining. USA:AAAI Press, 1996:226-231. [19] NG R T, HAN J. Efficient and effective clustering methods for spatial data mining[C]//International Conference on Very Large Data Bases. San Francisco:Margan Kaufmann, 1994:144-155. [20] ZHANG T, RAMAKRISHNAN R, LIVNY M. BIRCH:An efficient data clustering method for very large databases[J]. ACM SIGMOD Record, 1999, 25(2):103-114. [21] SUN C F, SHI Y L, LI Q I, et al. A hybrid approach for detecting fraudulent medical insurance claims:(Extended abstract)[C]//Proceedings of the 2016 Interational Conference on Autonomous) Agents & Multiagent Systems. Singapore:IFAAMS, 2016:1287-1288. [22] MOYANO L G, APPEL A P, SANTANA V F D, et al. GraPhys:Understanding health care insurance data through graph analytics[C]//International Conference Companion on World Wide Web.[S.l.]:International World Wide Web Conferences Steering Committee, 2016:227-230. [23] BAUDER R A, KHOSHGOFTAAR T M. A novel method for fraudulent medicare claims detection from expected payment deviations (Application Paper)[C]//IEEE, International Conference on Information Reuse and Integration.[S.l.]:IEEE, 2016:11-19. [24] 关皓文. 基于离群点检测方法的医保异常发现[D]. 济南:山东大学, 2016. [25] HE Z, XU X, DENG S. Squeezer:An efficient algorithm for clustering categorical data[J]. Journal of Computer Science and Technology, 2002, 17(5):611-624. |