华东师范大学学报(自然科学版) ›› 2022, Vol. 2022 ›› Issue (1): 52-61.doi: 10.3969/j.issn.1000-5641.2022.01.007

• 物理学与电子学 • 上一篇    下一篇

硅碳复合结构对锂离子电池负极电化学性能的影响

田晓华(), 余晨露, 郑瀚, 孙卓, 张哲娟*(), 朴贤卿   

  1. 华东师范大学 物理与电子科学学院 纳光电集成与先进装备教育部工程研究中心, 上海 200241
  • 收稿日期:2021-04-23 出版日期:2022-01-25 发布日期:2022-01-18
  • 通讯作者: 张哲娟 E-mail:xhtian404@yeah.net;zjzhang@phy.ecnu.edu.cn
  • 基金资助:
    上海市科委项目(19DZ1205102, 20DZ1202106)

Effect of silicon/carbon composite structure on its electrochemical performance as a lithium-ion battery anode

Xiaohua TIAN(), Chenlu YU, Han ZHENG, Zhuo SUN, Zhejuan ZHANG*(), Xianqing PIAO   

  1. Engineering Research Center for Nanophotonics and Advanced Instrument (Ministry of Education), School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
  • Received:2021-04-23 Online:2022-01-25 Published:2022-01-18
  • Contact: Zhejuan ZHANG E-mail:xhtian404@yeah.net;zjzhang@phy.ecnu.edu.cn

摘要:

以晶硅太阳能电池生产过程中的晶硅切削废料为原料、以壳聚糖(Chitosan, CTS)为碳源, 通过液相包裹和低温热解工艺制备了具有较大孔隙的硅/硬碳复合材料(Si@CTS). 对比研究了Si@CTS及Si@CTS混合石墨后(Si@CTS/G)分别作为锂离子电池负极的电化学性能. 结果表明, 具有孔隙和互联结构的Si@CTS负极首次放电比容量可达到1672.8 mAh/g, 首次库伦效率达到了84.45%; 在循环100圈之后Si@CTS放电比容量保持在626.4 mAh/g. 进一步, 将Si@CTS作为高容量活性物质添加至石墨中, 研磨混合后制得的Si@CTS/G复合负极表现出良好的稳定性, 在循环100圈之后放电比容量为698.1 mAh/g, 对高容量高稳定性硅碳负极批量化生产和应用具有重要意义.

关键词: 亚微米硅, 硅废料, 硅碳负极材料, 锂离子电池, 联结结构

Abstract:

Porous silicon/hard carbon composite (Si@CTS) was successfully fabricated using liquidphase encapsulation and a low-temperature pyrolysis process, in which silicon particles from cutting waste in the manufacturing of crystalline silicon solar cells was used as a raw material and chitosan as carbon source. In this paper, the electrochemical performance of Si@CTS and a mixture of Si@CTS and graphite (Si@CTS/G) as anode materials of a lithium-ion battery was studied. The Si@CTS electrode showed a high discharge specific capacity of 1672.8 mAh/g and a high initial coulombic efficiency of 84.45%. After 100 cycles, the Si@CTS retained a reversible capacity of 626.4 mAh/g. The discharge specific capacity of the Si@CTS/G composite was 698.1 mAh/g; hence, the discharge specific capacity of the Si@CTS/G composite was higher than that of Si@CTS and offered better stability. The findings are critical for mass manufacture and deployment of silicon/carbon anodes with high capacity and stability in lithium-ion batteries.

Key words: sub-micron silicon, silicon waste, silicon/carbon composite, lithium-ion battery, interconnected structure

中图分类号: