1 |
WANG Z, MAO Z, LAI L, et al. Sub-micron silicon/pyrolyzed carbon@natural graphite self-assembly composite anode material for lithium-ion batteries. Chemical Engineering Journal, 2017, 313, 187- 196.
doi: 10.1016/j.cej.2016.12.072
|
2 |
JIA H, ZHENG J, SONG J, et al. A novel approach to synthesize micrometer-sized porous silicon as a high performance anode for lithium-ion batteries. Nano Energy, 2018, 50, 589- 597.
doi: 10.1016/j.nanoen.2018.05.048
|
3 |
CHEN K, YANG H, LIANG F, et al. Microwave-irradiation-assisted combustion toward modified graphite as lithium ion battery anode. ACS Applied Materials & Interfaces, 2018, 10 (1): 909- 914.
|
4 |
JANG J, KIM H, LIM H, et al. Surfactant-based selective assembly approach for Si-embedded silicon oxycarbide composite materials in lithium-ion batteries. Chemical Engineering Journal, 2020, 401, 126091.
doi: 10.1016/j.cej.2020.126091
|
5 |
WU J, QIN X, ZHANG H, et al. Multilayered silicon embedded porous carbon/graphene hybrid film as a high performance anode. Carbon, 2015, 84, 434- 443.
doi: 10.1016/j.carbon.2014.12.036
|
6 |
CHO S, JANG H Y, JUNG I, et al. Synthesis of embossing Si nanomesh and its application as an anode for lithium ion batteries. Journal of Power Sources, 2017, 362, 270- 277.
doi: 10.1016/j.jpowsour.2017.07.048
|
7 |
LEE D, KONDO A, LEE S, et al. Controlled swelling behavior and stable cycling of silicon/graphite granular composite for high energy density in lithium ion batteries. Journal of Power Sources, 2020, 457, 228021.
doi: 10.1016/j.jpowsour.2020.228021
|
8 |
KASAVAJJULA U, WANG C, APPLEBY A J. Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. Journal of Power Sources, 2007, 163 (2): 1003- 1039.
doi: 10.1016/j.jpowsour.2006.09.084
|
9 |
BOUKAMP B A, LESH G C, HUGGINS R A. All-solid lithium electrodes with mixed‐conductor matrix. Journal of The Electrochemical Society, 1981, 128 (4): 725- 728.
doi: 10.1149/1.2127495
|
10 |
ESHETU G G, FIGGEMEIER E. Confronting the challenges of next-generation silicon anode-based lithium-ion batteries: Role of designer Electrolyte additives and polymeric binders. ChemSusChem, 2019, 12 (12): 2515- 2539.
doi: 10.1002/cssc.201900209
|
11 |
CASIMIR A, ZHANG H, OGOKE O, et al. Silicon-based anodes for lithium-ion batteries: Effectiveness of materials synthesis and electrode preparation. Nano Energy, 2016, 27, 359- 376.
doi: 10.1016/j.nanoen.2016.07.023
|
12 |
余晨露, 田晓华, 张哲娟, 等. 锂离子电池硅基负极比容量提升的研究进展. 储能科学与技术, 2020, 9 (6): 1614- 1628.
|
13 |
XU C, WANG B, LUO H, et al. Embedding silicon in pinecone-derived porous carbon as a high-performance anode for lithium-ion batteries. ChemElectroChem, 2020, 7 (13): 2889- 2895.
doi: 10.1002/celc.202000827
|
14 |
PAREKH M H, PARIKH V P, KIM P J, et al. Encapsulation and networking of silicon nanoparticles using amorphous carbon and graphite for high performance Li-ion batteries. Carbon, 2019, 148, 36- 43.
doi: 10.1016/j.carbon.2019.03.037
|
15 |
TONG L, WANG P, FANG W, et al. Interface engineering of silicon/carbon thin-film anodes for high-rate lithium-ion batteries. ACS Applied Materials & Interfaces, 2020, (12): 29242- 29252.
|
16 |
CHEN C Y, LIANG A H, HUANG C L, et al. The pitch-based silicon-carbon composites fabricated by electrospraying technique as the anode material of lithium ion battery. Journal of Alloys and Compounds, 2020, 844, 156025.
doi: 10.1016/j.jallcom.2020.156025
|
17 |
余晨露, 田晓华, 郑瀚, 等. 高稳定性硅/硬碳复合负极在锂电负极中的应用. 储能科学与技术, 2021, 10 (1): 128- 136.
|
18 |
QIE L, CHEN W M, WANG Z H, et al. Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability. Advanced Materials, 2012, 24 (15): 2047- 2050.
doi: 10.1002/adma.201104634
|
19 |
CHEN Y, MAO Q, BAO L, et al. Rational design of coaxial MWCNTs@Si/SiOx@C nanocomposites as extending-life anode materials for lithium-ion batteries. Ceramics International, 2018, 44 (14): 16660- 16667.
doi: 10.1016/j.ceramint.2018.06.093
|
20 |
高礼. 壳聚糖应用于水处理的化学基础. 水科学与工程技术, 2008, S2, 9- 13.
|
21 |
LIU X H, ZHONG L, HUANG S, et al. Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano, 2012, 6 (2): 1522- 1531.
doi: 10.1021/nn204476h
|
22 |
PELED E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—The solid electrolyte interphase model. Journal of The Electrochemical Society, 1979, 126 (12): 2047- 2051.
doi: 10.1149/1.2128859
|
23 |
EIN‐ELI Y. A new perspective on the formation and structure of the solid electrolyte interface at the graphite anode of Li-ion cells. Electrochemical and Solid State Letters, 1999, 2 (5): 212- 214.
doi: 10.1149/1.1390787
|
24 |
YANG W, YING H, ZHANG S, et al. Electrochemical performance enhancement of porous Si lithium-ion battery anode by integrating with optimized carbonaceous materials. Electrochimica Acta, 2020, 337, 135687.
doi: 10.1016/j.electacta.2020.135687
|
25 |
WANG J, POLLEUX J, LIM J, et al. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles . The Journal of Physical Chemistry C, 2007, 111 (40): 14925- 14931.
doi: 10.1021/jp074464w
|