1 |
TISSEUR F, MEERBERGEN K. The quadratic eigenvalue problem. Siam Review, 2001, 43 (2): 235- 286.
|
2 |
赵康. 二次特征值反问题的数值解法及其应用 [D]. 长沙: 湖南大学, 2015.
|
3 |
ZHAO K, CHENG L Z, LI S G, et al. A new updating method for the damped mass-spring systems. Applied Mathematical Modelling, 2018, 62, 119- 133.
|
4 |
HAJARIAN M, ABBAS H. Least squares solutions of quadratic inverse eigenvalue problem with partially bisymmetric matrices under prescribed submatrix constraints. Computers and Mathematics with Applications, 2018, 76 (6): 1458- 1475.
|
5 |
CHEN C R, MA C F. Improved DC programming approaches for solving the quadratic eigenvalue complementarity problem. Computers and Mathematics with Applications, 2019, 77, 2585- 2595.
|
6 |
XIE H Q. An iterative method for simultaneously computing the derivatives of simple and multiple eigenpairs of a quadratic eigenvalue problem. Journal of Computational and Applied Mathematics, 2019, 365, 133- 151.
|
7 |
郭丽杰, 周硕. 用试验数据修正质量矩阵, 阻尼矩阵与刚度矩阵. 系统科学与数学, 2017, 37 (2): 587- 600.
|
8 |
尚晓琳, 张澜. 反自反矩阵的二次特征值反问题及其最佳逼近. 工程数学学报, 2018, 35 (5): 579- 587.
|
9 |
刘庆, 戴华. 大型对称二次束部分极点配置的多步法. 高等学校计算数学学报, 2019, 41 (4): 358- 374.
|
10 |
袁驷, 孙浩涵. 二维自由振动问题的自适应有限元分析初探. 工程力学, 2020, 37 (1): 17- 25.
|
11 |
TRENCH W F. Hermitian, hermitian R-symmetric, and hermitian R-skew symmetric Procrustes problems . Linear Algebra and its Applications, 2004, 387, 83- 98.
|
12 |
戴华. 矩阵论 [M]. 北京: 科学出版社, 2001.
|
13 |
程云鹏. 矩阵论 [M]. 2版. 西安: 西北工业大学出版社, 2000.
|