| 1 |
WEINBERG S.. Phenomenological Lagrangians. Physica A, 1979, 96 (1/2): 327- 340.
|
| 2 |
GASSER J, LEUTWYLER H.. Chiral perturbation theory to one loop. Annals of Physics, 1984, 158 (1): 142- 210.
|
| 3 |
GASSER J, LEUTWYLER H.. Chiral perturbation theory: Expansions in the mass of the strange quark. Nuclear Physics B, 1985, 250 (1/2/3/4): 465- 516.
|
| 4 |
GASSER J, SAINIO M E, SVARC A.. Nucleons with chiral loops. Nuclear Physics B, 1988, 307 (4): 779- 853.
|
| 5 |
GEORGI H.. An effective field theory for heavy quarks at low energies. Physics Letters B, 1990, 240 (3-4): 447- 450.
|
| 6 |
ECKER G, MOJZIS M.. Low-energy expansion of the pion-nucleon Lagrangian. Physics Letters B, 1996, 365 (1/2/3/4): 312- 318.
|
| 7 |
BECHER T, Leutwyler H.. Baryon chiral perturbation theory in manifestly Lorentz invariant form. The European Physical Journal C-Particles and Fields, 1999, 9 (4): 643- 671.
|
| 8 |
GEGELIA J, JAPARIDZE G.. Matching the heavy particle approach to relativistic theory. Physical Review D, 1999, 60 (11): 114038.
|
| 9 |
PASCALATSA V, Holstein B R, Van der haeghen M.. A derivative of the Gerasimov–Drell–Hearn sum rule. Physics Letters B, 2004, 600 (3/4): 239- 247.
|
| 10 |
GENG L S, CAMALICH J M, ALVAREZ-RUSO L, et al.. Leading SU (3)-breaking corrections to the baryon magnetic moments in chiral perturbation theory. Physical Review Letters, 2008, 101 (22): 222002.
|
| 11 |
MARTIN CAMALICH J, GENG L S, VICENTE VACAS M J.. Lowest-lying baryon masses in covariant SU(3)-flavor chiral perturbation theory. Physical Review D, 2010, 82 (7): 074504.
|
| 12 |
REN X L, GENG L S, MENG J, et al.. Virtual decuplet effects on octet baryon masses in covariant baryon chiral perturbation theory. Physical Review D, 2013, 87 (7): 074001.
|
| 13 |
GEGELIA J, JAPARIDZE G, WANG X Q.. Power counting in relativistic baryon chiral perturbation theory. Journal of Physics G: Nuclear and Particle Physics, 2003, 29 (9): 2303.
|
| 14 |
YANG J F.. Anomalous “mapping” between pionfull and pionless EFT’s. Modern Physics Letters A, 2014, 29 (9): 1450043.
|
| 15 |
李帆, 杨继锋.. 核子–核子散射一圈图的手征有效场论分析. 华东师范大学学报(自然科学版), 2016, (3): 67- 75.
|
| 16 |
温莉宏, 杨继锋.. 强子结构的协变手征有效理论分析. 华东师范大学学报 (自然科学版), 2018, (3): 121- 128.
|
| 17 |
王彦, 杨继锋.. 矢量介子协变手征有效场理论研究. 华东师范大学学报(自然科学版), 2020, (1): 67- 75.
|
| 18 |
LIU Z, WEN L H, YANG J F.. Covariant propagator and chiral power counting. Nuclear Physics B, 2021, 963, 115288.
|
| 19 |
JENKINS E.. Baryon masses in chiral perturbation theory. Nuclear Physics B, 1992, 368 (1): 190- 203.
|
| 20 |
CAMALICH J M. Properties of the lowest-lying baryons in chiral perturbation theory[D]. Facultat de Fisica, 2010.
|
| 21 |
AOKI S, ISHIKAWA K I, ISHIZUKA N, et al.. 2 + 1 flavor lattice QCD toward the physical point. Physical Review D, 2009, 79 (3): 034503.
|
| 22 |
GENG L S, CAMALICH J M, VACAS M J V.. Leading-order decuplet contributions to the baryon magnetic moments in Chiral Perturbation Theory. Physics Letters B, 2009, 676 (1-3): 63- 68.
|
| 23 |
BEANE S R, CHANG E, DETMOLD W, et al.. High statistics analysis using anisotropic clover lattices: IV. Volume dependence of light hadron masses. Physical Review D, 2011, 84 (1): 014507.
|
| 24 |
KUBIS B, MEIßNER U G.. Baryon form factors in chiral perturbation theory. The European Physical Journal C–Particles and Fields, 2001, 18 (4): 747- 756.
|
| 25 |
COLEMAN S, GLASHOW S L.. Electrodynamic properties of baryons in the unitary symmetry scheme. Physical Review Letters, 1961, 6 (8): 423- 425.
|
| 26 |
BERNARD V, KAISER N, MEIßNER U G.. Chiral dynamics in nucleons and nuclei. International Journal of Modern Physics E, 1995, 4 (2): 193- 344.
|
| 27 |
MEIßNER U G, STEININGER S.. Baryon magnetic moments in chiral perturbation theory. Nuclear Physics B, 1997, 499 (1/2): 349- 367.
|