1 |
ZHANG D W, ZHAO Y X, LIU R B, et al.. Quantum simulation of exotic PT-invariant topological nodal loop bands with ultracold atoms in an optical lattice. Physical Review A, 2016, 93 (4): 043617.
|
2 |
GROSS C, BLOCH I.. Quantum simulations with ultracold atoms in optical lattices. Science, 2017, 357 (6355): 995- 1001.
|
3 |
AARONSON S.. Quantum randomness. American Scientist, 2014, 102 (4): 266.
doi: 10.1511/2014.109.266
|
4 |
HERRERO-COLLANTES M, GARCIA-ESCARTIN J C.. Quantum random number generators. Reviews of Modern Physics, 2017, 89 (1): 015004.
|
5 |
PETERS A, CHUNG K Y, CHU S.. Measurement of gravitational acceleration by dropping atoms. Nature, 1999, 400 (6747): 849- 852.
|
6 |
ROSI G, SORRENTINO F, CACCIAPUOTI L, et al.. Precision measurement of the Newtonian gravitational constant using cold atoms. Nature, 2014, 510 (7506): 518- 521.
|
7 |
COMPARAT D, FIORETTI A, STERN G, et al.. Optimized production of large Bose-Einstein condensates. Physical Review A, 2006, 73 (4): 043410.
|
8 |
BOGOLIUBOV N N.. On the theory of superfluidity. Engl Transl J Phys (USSR), 1947, 11 (1): 23- 32.
|
9 |
LIU Y M, BAO C G.. Analytical solutions of the coupled Gross–Pitaevskii equations for the three-species Bose–Einstein condensates. Journal of Physics A, 2017, 50 (27): 275301.
|
10 |
GAO Y J, MAYFIELD J, LUO S T. Numerical solutions of the time-dependent Schrödinger equation with position-dependent effective mass[J]. Numerical Methods for Partial Differential Equations, 2023, 39(4): 3222-3245.
|
11 |
CAPLAN R M, CARRETERO-GONZÁLEZ R.. Numerical stability of explicit Runge–Kutta finite-difference schemes for the nonlinear Schrödinger equation. Applied Numerical Mathematics, 2013, 71, 24- 40.
|
12 |
AGRAWAL G P. Nonlinear Fiber Optics [M]. New York: The Institute of Optics University of Rochester, 2013: 47-51.
|
13 |
VAN DIJK W, TOYAMA F M.. Accurate numerical solutions of the time-dependent Schrödinger equation. Physical Review E, 2007, 75 (3): 036707.
|
14 |
MOYER C A.. Numerov extension of transparent boundary conditions for the Schrödinger equation in one dimension. American Journal of Physics, 2004, 72 (3): 351- 358.
|
15 |
ABDULLAEV F K, CAPUTO J G, KRAENKEL R A, et al.. Controlling collapse in Bose-Einstein condensates by temporal modulation of the scattering length. Physical Review A, 2003, 67 (1): 013605.
|
16 |
GROSS E P.. Hydrodynamics of a superfluid condensate. Journal of Mathematical Physics, 1963, 4 (2): 195- 207.
|
17 |
PITAEVSKII L P.. Vortex lines in an imperfect Bose gas. Zh Eksper Teor Fiz, 1961, 40 (2): 646- 651.
|
18 |
GOLDBERG A, SCHEY H M, SCHWARTZ J L.. Computer-generated motion pictures of one-dimensional quantum-mechanical transmission and reflection phenomena. American Journal of Physics, 1967, 35 (3): 177- 186.
|