1 |
LEE H, KOK P, DOWLING J P.. A quantum Rosetta stone for interferometry. Journal of Modern Optics, 2002, 49 (14/15): 2325- 2338.
|
2 |
BRAUNSTEIN S L, CAVES C M, MILBURN G J.. Generalized uncertainty relations: Theory, examples, and Lorentz invariance. Annals of Physics, 1996, 247 (1): 135- 173.
|
3 |
BRAUNSTEIN S L, CAVES C M.. Statistical distance and the geometry of quantum states. Physical Review Letters, 1994, 72 (22): 3439- 3443.
|
4 |
CAVES C M.. Quantum-mechanical noise in an interferometer. Physical Review D, 1981, 23 (8): 1693- 1708.
|
5 |
HELSTROM C W. Quantum detection and estimation theory [J]. Journal of Statistical Physics, 1969, 1(2): 231-252.
|
6 |
YURKE B, MCCALL S L, KLAUDER J R.. SU(2) and SU(1, 1) interferometers. Physical Review A, 1986, 33 (6): 4033- 4054.
|
7 |
YUE J D, ZHANG Y R, FAN H.. Quantum-enhanced metrology for multiple phase estimation with noise. Scientific Reports, 2014, 4 (1): 5933.
|
8 |
DEMKOWICZ-DOBRZAŃSKI R, KOŁODYŃSKI J, GUŢĂ M.. The elusive Heisenberg limit in quantum-enhanced metrology. Nature Communications, 2012, 3 (1): 1063.
|
9 |
ESCHER B M, DE MATOS FILHO R L, DAVIDOVICH L.. General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology. Nature Physics, 2011, 7 (5): 406- 411.
|
10 |
DEMKOWICZ-DOBRZANSKI R, DORNER U, SMITH B J, et al.. Quantum phase estimation with lossy interferometers. Physical Review A, 2009, 80 (1): 013825.
|
11 |
GAO Y, LEE H.. Bounds on quantum multiple-parameter estimation with Gaussian state. The European Physical Journal D, 2014, 68, 347.
|
12 |
LIU J, JING X X, WANG X G.. Phase-matching condition for enhancement of phase sensitivity in quantum metrology. Physical Review A, 2013, 88 (4): 042316.
|
13 |
PINEL O, JIAN P, TREPS N, et al.. Quantum parameter estimation using general single-mode Gaussian states. Physical Review A, 2013, 88 (4): 040102.
|
14 |
SPARACIARI C, OLIVARES S, PARIS M G A.. Bounds to precision for quantum interferometry with Gaussian states and operations. Journal of the Optical Society of America B, 2015, 32 (7): 1354- 1359.
|
15 |
WANG X B, HIROSHIMA T, TOMITA A, et al.. Quantum information with Gaussian states. Physics Reports, 2007, 448 (1/2/3/4): 1- 111.
|
16 |
DEMKOWICZ-DOBRZAŃSKI R, JARZYNA M, KOŁODYŃSKI J. Chapter Four - Quantum Limits in Optical Interferometry [M]//Progress in Optics. [S.l.]: Elsevier Ltd., 2015, 60: 345-435.
|
17 |
TÓTH G, APELLANIZ I.. Quantum metrology from a quantum information science perspective. Journal of Physics A, 2014, 47 (42): 424006.
|
18 |
JARZYNA M, DEMKOWICZ-DOBRZAŃSKI R.. Quantum interferometry with and without an external phase reference. Physical Review A, 2012, 85 (1): 011801.
|
19 |
GONG Q K, LI D, YUAN C H, et al.. Phase estimation of phase shifts in two arms for an SU(1, 1) interferometer with coherent and squeezed vacuum states*. Chinese Physics B, 2017, 26 (9): 094205.
|
20 |
LI D, GARD B T, GAO Y, et al.. Phase sensitivity at the Heisenberg limit in an SU(1, 1) interferometer via parity detection. Physical Review A, 2016, 94 (6): 063840.
|
21 |
LIU J, YUAN H, LU X M, et al.. Quantum Fisher information matrix and multiparameter estimation. Journal of Physics A, 2020, 53 (2): 023001.
|
22 |
SZCZYKULSKA M, BAUMGRATZ T, DATTA A.. Multi-parameter quantum metrology. Advances in Physics: X, 2016, 1 (4): 621- 639.
|
23 |
PARIS M G A.. Quantum estimation for quantum technology. International Journal of Quantum Information, 2009, 7 (supp01): 125- 137.
|
24 |
YOU C L, ADHIKARI S, MA X P, et al.. Conclusive precision bounds for SU(1, 1) interferometers. Physical Review A, 2019, 99 (4): 042122.
|
25 |
TAKEOKA M, SESHADREESAN K P, YOU C L, et al.. Fundamental precision limit of a Mach-Zehnder interferometric sensor when one of the inputs is the vacuum. Physical Review A, 2017, 96 (5): 052118.
|