1 |
ZAMANAKOS G, TSOCHATZIDIS L, AMANATIADIS A, et al.. A comprehensive survey of LIDAR-based 3D object detection methods with deep learning for autonomous driving. Computers & Graphics, 2021, 99, 153- 181.
|
2 |
FAN L, PANG Z Q, ZHANG T Y, et al. Embracing single stride 3D object detector with sparse transformer [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). IEEE, 2022: 8448-8458.
|
3 |
SUN P, TAN M X, WANG W Y, et al. SWFormer: Sparse window transformer for 3D object detection in point clouds [C]// Computer Vision – ECCV 2022, ECCV 2022, Lecture Notes in Computer Science, vol 13670. Cham: Springer, 2022: 426-442.
|
4 |
SHI G S, LI R F, MA C. PillarNet: Real-time and high-performance pillar-based 3D object detection [C]// Computer Vision – ECCV 2022, ECCV 2022, Lecture Notes in Computer Science, vol 13670. Cham: Springer, 2022: 35-52.
|
5 |
CAI Y J, LI B Y, JIAO Z Y, et al. Monocular 3D object detection with decoupled structured polygon estimation and height-guided depth estimation [J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 10478-10485.
|
6 |
SHI X P, YE Q, CHEN X Z, et al. Geometry-based distance decomposition for monocular 3D object detection [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. IEEE, 2021: 15172-15181.
|
7 |
LU Y, MA X Z, YANG L, et al. Geometry uncertainty projection network for monocular 3D object detection [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. IEEE, 2021: 3111-3121.
|
8 |
吉银帅, 续晋华, 孙仕亮. 一种基于目标表面点高度和不确定性的单目深度估计方法: CN116843737A [P]. 2023-10-03.
|
9 |
ZHANG Y P, LU J W, ZHOU J. Objects are different: Flexible monocular 3D object detection [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2021: 3289-3298.
|
10 |
LI Z L, QU Z, ZHOU Y, et al. Diversity matters: Fully exploiting depth clues for reliable monocular 3D object detection [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2022: 2791-2800.
|
11 |
MA X Z, ZHANG Y M, XU D, et al. Delving into localization errors for monocular 3D object detection [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2021: 4721-4730.
|
12 |
LI P X, ZHAO H C, LIU P F, et al. RTM3D: Real-time monocular 3D detection from object keypoints for autonomous driving [C]// Computer Vision – ECCV 2020, ECCV 2020, Lecture Notes in Computer Science, vol 12348. Cham: Springer, 2020: 644-660.
|
13 |
DING M Y, HUO Y Q, YI H W, et al. Learning depth-guided convolutions for monocular 3D object detection [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. IEEE, 2020: 11672-11681.
|
14 |
CHEN X Z, KUNDU K, ZHANG Z Y, et al. Monocular 3D object detection for autonomous driving [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2016: 2147-2156.
|
15 |
BRAZIL G, LIU X M. M3D-RPN: Monocular 3D region proposal network for object detection [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. IEEE, 2019: 9287-9296.
|
16 |
QIN Z Q, LI X. MonoGround: Detecting monocular 3D objects from the ground [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2022: 3793-3802.
|
17 |
PENG L, WU X P, YANG Z, et al. DID-M3D: Decoupling instance depth for monocular 3D object detection [C]// Computer Vision – ECCV 2022, ECCV 2022, Lecture Notes in Computer Science, vol 13661. Cham: Springer, 2022: 71-88.
|
18 |
SHI S S, WANG X G, LI H S. PointRCNN: 3D object proposal generation and detection from point cloud [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2019: 770-779.
|
19 |
ZHOU Y, TUZEL O. VoxelNet: End-to-end learning for point cloud based 3D object detection [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2018: 4490-4499.
|
20 |
LANG A H, VORA S, CAESAR H, et al. PointPillars: Fast encoders for object detection from point clouds [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2019: 12697-12705.
|
21 |
RODDICK T, KENDALL A, CIPOLLA R. Orthographic feature transform for monocular 3D object detection [EB/OL]. (2018-11-20)[2023-10-08]. https://doi.org/10.48550/arXiv.1811.08188.
|
22 |
READING C, HARAKEH A, CHAE J, et al. Categorical depth distribution network for monocular 3D object detection [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2021: 8555-8564.
|
23 |
WANG Y, CHAO W L, GARG D, et al. Pseudo-lidar from visual depth estimation: Bridging the gap in 3D object detection for autonomous driving [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2019: 8445-8453.
|
24 |
MA X Z, WANG Z H, LI H J, et al. Accurate monocular 3D object detection via color-embedded 3D reconstruction for autonomous driving [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. IEEE, 2019: 6851-6860.
|
25 |
CHONG Z Y, MA X Z, ZHANG H, et al. MonoDistill: Learning spatial features for monocular 3D object detection [EB/OL]. (2022-01-26)[2023-10-08]. https://doi.org/10.48550/arXiv.2201.10830.
|
26 |
HU M, WANG S L, LI B, et al. PENet: Towards precise and efficient image guided depth completion [C]// 2021 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2021: 13656-13662.
|
27 |
PHUONG M, LAMPERT C H. Towards understanding knowledge distillation [EB/OL]. (2021-05-27)[2023-10-08]. https://doi.org/10.48550/arXiv.2105.13093.
|
28 |
ANGER H O.. Use of a gamma-ray pinhole camera for in vivo studies. Nature, 1952, 170 (4318): 200- 201.
|
29 |
YU F, WANG D Q, SHELHAMER E, et al. Deep layer aggregation [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2018: 2403-2412.
|
30 |
MOUSAVIAN A, ANGUELOV D, FLYNN J, et al. 3D bounding box estimation using deep learning and geometry [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2017: 7074-7082.
|
31 |
GEIGER A, LENZ P, STILLER C, et al.. Vision meets robotics: The KITTI dataset. The International Journal of Robotics Research, 2013, 32 (11): 1231- 1237.
|
32 |
KENDALL A, GAL Y. What uncertainties do we need in bayesian deep learning for computer vision? [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY, United States: Curran Associates Inc., 2017: 5580–5590.
|
33 |
SIMONELLI A, BULO S R, PORZI L, et al. Disentangling monocular 3D object detection [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. IEEE, 2019: 1991-1999.
|
34 |
WANG L, ZHANG L, ZHU Y, et al. Progressive coordinate transforms for monocular 3D object detection [C]// Advances in Neural Information Processing Systems 34 (NeurIPS 2021), 2021: 13364-13377.
|
35 |
HUANG K C, WU T H, SU H T, et al. MonoDTR: Monocular 3D object detection with depth-aware transformer [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2022: 4012-4021.
|
36 |
LIAN Q, LI P L, CHEN X Z. MonoJSG: Joint semantic and geometric cost volume for monocular 3D object detection [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2022: 1070-1079.
|