华东师范大学学报(自然科学版) ›› 2025, Vol. 2025 ›› Issue (6): 53-62.doi: 10.3969/j.issn.1000-5641.2025.06.007

• • 上一篇    下一篇

基于条件变分自编码器的联邦推荐系统冷启动问题研究

吕欣樾, 黄新力*()   

  1. 华东师范大学 计算机科学与技术学院, 上海 200062
  • 收稿日期:2024-03-02 出版日期:2025-11-25 发布日期:2025-11-29
  • 通讯作者: 黄新力 E-mail:xlhuang@cs.ecnu.edu.cn

Cold-start problem of federated recommendation systems based on conditional variational autoencoder

Xinyue LYU, Xinli HUANG*()   

  1. School of Computer Science and Technology, East China Normal University, Shanghai 200062, China
  • Received:2024-03-02 Online:2025-11-25 Published:2025-11-29
  • Contact: Xinli HUANG E-mail:xlhuang@cs.ecnu.edu.cn

摘要:

推荐系统的冷启动问题影响网站的推荐质量和用户体验, 同时还存在隐私安全问题, 这已成为该领域最具挑战性的研究热点之一. 针对该问题, 提出了一种集成联邦学习框架的条件变分自编码器模型(FedCVAE), 通过在客户端训练各自的条件自编码器模型, 学习用户、商品及用户交互序列的嵌入表示, 作为骨干推荐模型的输入, FedCVAE在服务器端完成全局模型的聚合更新并下发至客户端, 以指导本地条件自编码器模型更新超参数, 在提高模型处理稀疏数据的推荐准确度的同时, 增强模型的隐私保护能力, 从而有效缓解了推荐系统冷启动问题. 实验结果表明, 在3类典型冷启动场景中, 相较于主流推荐算法, 所提出模型的平均绝对误差指标分别降低了0.8% ~ 5.5%, Hit@5指标分别提升了1.2% ~ 5.7%, 均表现出优越的性能, 实现了更高质量的、兼具个性化体验和隐私保护增强的推荐服务.

关键词: 推荐系统, 冷启动, 联邦学习, 元学习, 变分自编码器

Abstract:

The cold-start problem of recommendation systems which affects recommendation quality, service experience, privacy, and security, has become one of the most challenging research hotspots in the field. Thus, our study proposed an integrated federated learning framework for conditional variational autoencoders (CVAE), termed as FedCVAE. Individual CVAE models were trained on each client’s local data to generate embeddings of users, items, and user interaction sequences. These embeddings were used as inputs for the essential recommendation model. The model’s global parameters were aggregated and updated at the server-side, which was subsequently disseminated back to the client-side to support local CVAE models in updating hyperparameters. While the model improves its accuracy in handling sparse data, it also enhances its ability to preserve privacy, thus effectively mitigating the cold-start problem. The experimental results indicate that in three typical cold-start scenarios, the model presented in this paper outperformed mainstream recommendation algorithms. The mean absolute error metric reduces by approximately 0.8% ~ 5.5%, and the Hit@5 metric improves by approximately 1.2% ~ 5.7%. The model demonstrated superior performance, delivering high-quality recommendation services that balance personalized experiences and enhanced privacy protection.

Key words: recommendation systems, cold-start, federated learning, meta-learning, variational autoencoder

中图分类号: