华东师范大学学报(自然科学版) ›› 2007, Vol. 2007 ›› Issue (1): 65-69.

• 数学 • 上一篇    下一篇

广义最小二乘估计的稳健性

刘湘蓉1,2, 王静龙1   

  1. 1. 华东师范大学 统计系, 上海 200062; 2. 浙江财经学院 数学与统计学院, 杭州 310018
  • 收稿日期:2005-08-15 修回日期:2005-10-31 出版日期:2007-01-25 发布日期:2007-01-25
  • 通讯作者: 刘湘蓉

Robustness of GLSE(Chinese)

LIU Xiang-rong1,2, WANG Jing-long2   

  1. 1. Department of Statistics, East China Normal University, Shanghai 200062 China; 2. Mathematics and Statistics School, Zhejiang University ofFinance and Economics, Hangzhou 310018, China
  • Received:2005-08-15 Revised:2005-10-31 Online:2007-01-25 Published:2007-01-25
  • Contact: LIU Xiang-rong

摘要: 讨论了协方差阵未知的椭球等高线性模型中的稳健性问题. 证明当协方差阵在一定范围内变动时, 广义最小二乘估计在一大类损失函数下都是风险最小的估计; 广义最小二乘估计关于协方差阵和损失函数 同时具有稳健性.

关键词: 广义最小二乘估计, Gauss-Markov定理, 稳健性, 同变估计, 对称凸函数, 广义最小二乘估计, Gauss-Markov定理, 稳健性, 同变估计, 对称凸函数

Abstract: Linear regression model with elliptically symmetric errors and unknown dispersion matrix was discussed. For a given matrix $ \Sigma}_{0}$, when the real dispersion matrix varying within certain range, the GLSE $\hat{\beta}({\vec \Sigma}_{0}) = (\X'{\vec \Sigma}_{0}^{-1}\X)^{-1}\X'{\vec \Sigma}_{0}^{-1}y$ is the minimum risk estimator under a large class of loss functions, which implies the GLSE is a robust estimator with respect to dispersion matrix and loss functions.

Key words: Gauss-Markov theorem, robust, equivariant estimator, symmetric convex function, generalized least squares estimator, Gauss-Markov theorem, robust, equivariant estimator, symmetric convex function

中图分类号: