华东师范大学学报(自然科学版) ›› 2005, Vol. 2005 ›› Issue (2): 6-15.

• 数学 统计学 • 上一篇    下一篇

树的移接变形与代数连通度

尹书华1,2, 束金龙1,吴雅容1,3   

  1. 1. 华东师范大学 数学系, 上海 200062; 2. 浙江万里学院 数学研究所, 浙江宁波 315100; 3. 上海海事大学 基础部, 上海 200135
  • 收稿日期:2003-05-10 修回日期:2003-06-17 出版日期:2005-05-25 发布日期:2005-05-25
  • 通讯作者: 束金龙

Large Graft and Algebraic Connectivity of Trees(Chinese)

YIN Shu-hua 1, 2, SHU Jin-long1, WU Ya-rong 1, 3   

  1. 1. Department of Mathematics, East China Normal University, Shanghai 200062, China; 2. Institute of Mathematics, Zhejiang Wanli University, Ningbo, Zhejiang 315100,China; 3. Shanghai Maritime University, Shanghai 200135, China
  • Received:2003-05-10 Revised:2003-06-17 Online:2005-05-25 Published:2005-05-25
  • Contact: SHU Jin-long

摘要: 讨论了树的代数连通度.利用移接变形给出树的代数连通度的一种变化关系,同时给出了两类树的代数连通度与直径的关系.

关键词: Laplace矩阵, 代数连通度, Fiedler向量, Laplace矩阵, 代数连通度, Fiedler向量

Abstract: In this paper, the algebraic connectivity of trees is determined by grafting; meanwhile the relation between the algebraic connectivity and the diameter of two classes of trees is also determined.

Key words: Algebraic connectivity, Fiedler vector, Laplacian matrix, Algebraic connectivity, Fiedler vector

中图分类号: