华东师范大学学报(自然科学版) ›› 2009, Vol. 2009 ›› Issue (5): 100-106.

• 应用数学与基础数学 • 上一篇    下一篇

独立零元素的选取问题

管志忠1,2, 刘永明1   

  1. 1. 华东师范大学 数学系, 上海 200241; 2. 池州职业技术学院, 安徽 池州 247000
  • 收稿日期:2009-02-06 修回日期:2009-04-02 出版日期:2009-09-25 发布日期:2014-10-13
  • 通讯作者: 刘永明

On the problem of transversal selection (Chinese)

GUAN Zhi-zhong1,2, LIU Yong-ming1   

  1. 1. Department of Mathematics, East China Normal University, Shanghai 200241, China; 2. Chizhou Vocational and Technical College, Chizhou Anhui 247000, China
  • Received:2009-02-06 Revised:2009-04-02 Online:2009-09-25 Published:2014-10-13
  • Contact: LIU Yong-ming

摘要: 匈牙利匹配方法是指派问题的一个高效的算法,而匈牙利矩阵方法易于实际的操作,应用较广. 但后者选取独立零元素有多个可能性时, 不当的选取会使得矩阵方法失效. 本文根据匈牙利方法的匹配理论,得到了选取独立零元素的一般方法,并给出了实现此方法的指派问题的MATLAB程序.

关键词: 指派问题, 匈牙利算法, MATLAB程序, 指派问题, 匈牙利算法, MATLAB程序

Abstract: The Hungarian method by matching is efficient in solving assignment problems. And its method by matrix is easy to handle and popular. But the latter method would fail in some special cases due to improper selection of zeros for transversal when there are more than one to choose. A general selection method of transversal was given based on the Hungarian method by matching. The MATLAB routine of our method was also given.

Key words: the Hungarian method, MATLAB routine, asssignment problem, the Hungarian method, MATLAB routine

中图分类号: